論文の概要: MaskPure: Improving Defense Against Text Adversaries with Stochastic Purification
- arxiv url: http://arxiv.org/abs/2406.13066v1
- Date: Tue, 18 Jun 2024 21:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:08:09.754629
- Title: MaskPure: Improving Defense Against Text Adversaries with Stochastic Purification
- Title(参考訳): MaskPure: 確率的浄化によるテキスト広告に対する防御の改善
- Authors: Harrison Gietz, Jugal Kalita,
- Abstract要約: コンピュータビジョン設定では、ノイズ除去処理は入力画像の浄化に有用であることが証明されている。
いくつかの初期の研究は、NLP設定における敵攻撃を緩和するためにランダムノイズ化とデノイズ化の使用について検討している。
我々は拡散過程にインスパイアされた入力浄化テキストの手法を拡張した。
われわれの新しい手法であるMaskPureは、他の現代の防御法と比べて頑丈さを上回ったり、一致させたりします。
- 参考スコア(独自算出の注目度): 7.136205674624813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The improvement of language model robustness, including successful defense against adversarial attacks, remains an open problem. In computer vision settings, the stochastic noising and de-noising process provided by diffusion models has proven useful for purifying input images, thus improving model robustness against adversarial attacks. Similarly, some initial work has explored the use of random noising and de-noising to mitigate adversarial attacks in an NLP setting, but improving the quality and efficiency of these methods is necessary for them to remain competitive. We extend upon methods of input text purification that are inspired by diffusion processes, which randomly mask and refill portions of the input text before classification. Our novel method, MaskPure, exceeds or matches robustness compared to other contemporary defenses, while also requiring no adversarial classifier training and without assuming knowledge of the attack type. In addition, we show that MaskPure is provably certifiably robust. To our knowledge, MaskPure is the first stochastic-purification method with demonstrated success against both character-level and word-level attacks, indicating the generalizable and promising nature of stochastic denoising defenses. In summary: the MaskPure algorithm bridges literature on the current strongest certifiable and empirical adversarial defense methods, showing that both theoretical and practical robustness can be obtained together. Code is available on GitHub at https://github.com/hubarruby/MaskPure.
- Abstract(参考訳): 敵攻撃に対する防衛の成功を含む言語モデルの堅牢性の改善は、依然として未解決の問題である。
コンピュータビジョン設定において,拡散モデルによって提供される確率的雑音化・雑音化処理は,入力画像の浄化に有用であることが証明され,敵攻撃に対するモデル堅牢性が改善された。
同様に、いくつかの初期の研究は、NLP設定における敵攻撃を緩和するためにランダムノイズ化と非雑音化の使用を検討したが、これらの手法の品質と効率の改善は競争力を維持するために必要である。
拡散過程にインスパイアされた入力テキストの浄化方法を拡張し, 入力テキストの部分をランダムにマスクし, 補充する。
新たな手法であるMaskPureは,攻撃型の知識を前提とせず,敵の分類器の訓練も必要とせず,他の防御法と比較して頑健さを上回り,適合する。
さらに,MaskPureは確実に堅牢であることを示す。
我々の知る限り、MaskPureは、文字レベルと単語レベルの攻撃に対して成功した最初の確率的浄化法であり、確率的認知防御の一般化可能で有望な性質を示している。
要約: MaskPureアルゴリズムは、現在の最強の証明可能かつ実証的な敵防衛法に関する文献を橋渡しし、理論的および実用的堅牢性の両方を同時に得ることを示す。
コードはGitHubでhttps://github.com/hubarruby/MaskPure.comから入手できる。
関連論文リスト
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuardは、拡散ベースの画像編集モデルによる不正な編集に対する堅牢で効果的な防御方法である。
拡散過程の初期段階をターゲットとした対向雑音を発生させる新しい目的を提案する。
また,テスト期間中の各種マスクに対するロバスト性を高めるマスク強化手法も導入した。
論文 参考訳(メタデータ) (2024-10-08T05:19:19Z) - DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
敵の攻撃は、事前訓練された言語モデルを使って構築されたシステムにとって重要な課題となる。
本稿では,拡散層をエンコーダと分類器のデノイザとして組み込んだDiffuseDefを提案する。
推測中、敵対的隠蔽状態はまずサンプルノイズと組み合わせられ、次に反復的に復調され、最後にアンサンブルされ、堅牢なテキスト表現が生成される。
論文 参考訳(メタデータ) (2024-06-28T22:36:17Z) - Improving Adversarial Robustness via Decoupled Visual Representation Masking [65.73203518658224]
本稿では,特徴分布の観点から,ロバストな特徴の2つの新しい特性を強調した。
現状の防衛手法は、上記の2つの問題にうまく対処することを目的としている。
具体的には、分離された視覚的表現マスキングに基づく、シンプルだが効果的な防御法を提案する。
論文 参考訳(メタデータ) (2024-06-16T13:29:41Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Adversarial Text Purification: A Large Language Model Approach for
Defense [25.041109219049442]
敵の浄化は、敵の攻撃に対して分類器を保護するための防御機構である。
そこで本稿では,大規模言語モデルの生成能力を生かした,新たな逆文清浄法を提案する。
提案手法は,様々な分類器に対して顕著な性能を示し,攻撃時の精度を平均65%以上向上させる。
論文 参考訳(メタデータ) (2024-02-05T02:36:41Z) - Language Guided Adversarial Purification [3.9931474959554496]
生成モデルを用いた対向浄化は、強い対向防御性能を示す。
新しいフレームワーク、Language Guided Adversarial Purification (LGAP)は、事前訓練された拡散モデルとキャプションジェネレータを利用する。
論文 参考訳(メタデータ) (2023-09-19T06:17:18Z) - Text Adversarial Purification as Defense against Adversarial Attacks [46.80714732957078]
敵の浄化は敵の攻撃に対する防御機構として成功している。
本稿では,テキストの敵対的攻撃に対する防御に焦点を当てた,新たな敵対的浄化手法を提案する。
本研究では, Textfooler や BERT-Attack などの強力な攻撃手法を用いて, 提案手法を検証した。
論文 参考訳(メタデータ) (2022-03-27T04:41:55Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
敵対的攻撃に対するディープ・ネットワークの脆弱性は、認識とセキュリティの両方の観点から、ディープ・ラーニングの中心的な問題である。
我々は,自然学習型分類器の保護に重点を置き,マルコフ・チェイン・モンテカルロ (MCMC) とエネルギーベースモデル (EBM) を併用して敵の浄化を行った。
本研究は,1)現実的な長期MCMCサンプルを用いたEMMの訓練方法の改善,2)防衛の理論的曖昧さを解消する期待・オフバー・トランスフォーメーション(EOT)ディフェンス,3)自然に訓練された分類器と競争的ディフェンスのための最先端の対人ディフェンス,である。
論文 参考訳(メタデータ) (2020-05-27T17:53:36Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
離散データ(テキストなど)に対するアドリアック攻撃は、連続データ(画像など)よりも難しい。
対戦型サンプルを生成するための高品質で効果的な方法である textbfBERT-Attack を提案する。
本手法は、成功率と摂動率の両方において、最先端の攻撃戦略より優れている。
論文 参考訳(メタデータ) (2020-04-21T13:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。