NaviSplit: Dynamic Multi-Branch Split DNNs for Efficient Distributed Autonomous Navigation
- URL: http://arxiv.org/abs/2406.13086v1
- Date: Tue, 18 Jun 2024 22:25:09 GMT
- Title: NaviSplit: Dynamic Multi-Branch Split DNNs for Efficient Distributed Autonomous Navigation
- Authors: Timothy K Johnsen, Ian Harshbarger, Zixia Xia, Marco Levorato,
- Abstract summary: NaviSplit is the first instance of a lightweight navigation framework embedding a distributed and dynamic multi-branched neural model.
In our implementation, the perception model extracts a 2D depth map from a monocular RGB image captured by the drone using the robust simulator Microsoft AirSim.
Our results demonstrate that the NaviSplit depth model achieves an extraction accuracy of 72-81% while transmitting an extremely small amount of data.
- Score: 1.7477924189297296
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Lightweight autonomous unmanned aerial vehicles (UAV) are emerging as a central component of a broad range of applications. However, autonomous navigation necessitates the implementation of perception algorithms, often deep neural networks (DNN), that process the input of sensor observations, such as that from cameras and LiDARs, for control logic. The complexity of such algorithms clashes with the severe constraints of these devices in terms of computing power, energy, memory, and execution time. In this paper, we propose NaviSplit, the first instance of a lightweight navigation framework embedding a distributed and dynamic multi-branched neural model. At its core is a DNN split at a compression point, resulting in two model parts: (1) the head model, that is executed at the vehicle, which partially processes and compacts perception from sensors; and (2) the tail model, that is executed at an interconnected compute-capable device, which processes the remainder of the compacted perception and infers navigation commands. Different from prior work, the NaviSplit framework includes a neural gate that dynamically selects a specific head model to minimize channel usage while efficiently supporting the navigation network. In our implementation, the perception model extracts a 2D depth map from a monocular RGB image captured by the drone using the robust simulator Microsoft AirSim. Our results demonstrate that the NaviSplit depth model achieves an extraction accuracy of 72-81% while transmitting an extremely small amount of data (1.2-18 KB) to the edge server. When using the neural gate, as utilized by NaviSplit, we obtain a slightly higher navigation accuracy as compared to a larger static network by 0.3% while significantly reducing the data rate by 95%. To the best of our knowledge, this is the first exemplar of dynamic multi-branched model based on split DNNs for autonomous navigation.
Related papers
- EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - An Attention-Based Deep Learning Architecture for Real-Time Monocular Visual Odometry: Applications to GPS-free Drone Navigation [0.9558392439655012]
Research in visual odometry is advancing, potentially solving GPS-free navigation issues.
Recent studies utilizing deep neural networks (DNNs) have shown improved performance.
This paper presents a novel real-time monocular visual odometry model for drones.
arXiv Detail & Related papers (2024-04-27T01:22:45Z) - Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning [54.094272065609815]
We propose a lightweight 1D-CNN model, 1D-Justo-LiuNet, which outperforms state-of-the-art models in the hypespectral domain.
1D-Justo-LiuNet achieves the highest accuracy (0.93) with the smallest model size (4,563 parameters) among all tested models.
arXiv Detail & Related papers (2023-10-24T21:57:59Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Detection-segmentation convolutional neural network for autonomous
vehicle perception [0.0]
Object detection and segmentation are two core modules of an autonomous vehicle perception system.
Currently, the most commonly used algorithms are based on deep neural networks, which guarantee high efficiency but require high-performance computing platforms.
A reduction in the complexity of the network can be achieved by using an appropriate architecture, representation, and computing platform.
arXiv Detail & Related papers (2023-06-30T08:54:52Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
We introduce split depth-wise transpose attention (SDTA) encoder that splits input tensors into multiple channel groups.
Our EdgeNeXt model with 1.3M parameters achieves 71.2% top-1 accuracy on ImageNet-1K.
Our EdgeNeXt model with 5.6M parameters achieves 79.4% top-1 accuracy on ImageNet-1K.
arXiv Detail & Related papers (2022-06-21T17:59:56Z) - Robust Navigation for Racing Drones based on Imitation Learning and
Modularization [3.616948583169635]
This paper presents a vision-based modularized drone racing navigation system that uses a customized convolutional neural network (CNN) for the perception module.
We leverage a state-of-the-art planner and controller to generate low-level control commands, thus exploiting the advantages of both data-based and model-based approaches.
arXiv Detail & Related papers (2021-05-27T03:26:40Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Binary DAD-Net: Binarized Driveable Area Detection Network for
Autonomous Driving [94.40107679615618]
This paper proposes a novel binarized driveable area detection network (binary DAD-Net)
It uses only binary weights and activations in the encoder, the bottleneck, and the decoder part.
It outperforms state-of-the-art semantic segmentation networks on public datasets.
arXiv Detail & Related papers (2020-06-15T07:09:01Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.