Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
- URL: http://arxiv.org/abs/2412.18165v1
- Date: Tue, 24 Dec 2024 04:56:32 GMT
- Title: Parallel Neural Computing for Scene Understanding from LiDAR Perception in Autonomous Racing
- Authors: Suwesh Prasad Sah,
- Abstract summary: Traditional sequential network approaches may struggle to meet the real-time knowledge and decision-making demands of an autonomous agent.
This paper proposes a novel baseline architecture for developing sophisticated models capable of true hardware-enabled parallelism.
The proposed model takes raw 3D point cloud data from the LiDAR sensor as input and converts it into a 2D Bird's Eye View Map on both devices.
- Score: 0.0
- License:
- Abstract: Autonomous driving in high-speed racing, as opposed to urban environments, presents significant challenges in scene understanding due to rapid changes in the track environment. Traditional sequential network approaches may struggle to meet the real-time knowledge and decision-making demands of an autonomous agent covering large displacements in a short time. This paper proposes a novel baseline architecture for developing sophisticated models capable of true hardware-enabled parallelism, achieving neural processing speeds that mirror the agent's high velocity. The proposed model (Parallel Perception Network (PPN)) consists of two independent neural networks, segmentation and reconstruction networks, running parallelly on separate accelerated hardware. The model takes raw 3D point cloud data from the LiDAR sensor as input and converts it into a 2D Bird's Eye View Map on both devices. Each network independently extracts its input features along space and time dimensions and produces outputs parallelly. The proposed method's model is trained on a system with two NVIDIA T4 GPUs, using a combination of loss functions, including edge preservation, and demonstrates a 2x speedup in model inference time compared to a sequential configuration. Implementation is available at: https://github.com/suwesh/Parallel-Perception-Network. Learned parameters of the trained networks are provided at: https://huggingface.co/suwesh/ParallelPerceptionNetwork.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Runtime Construction of Large-Scale Spiking Neuronal Network Models on
GPU Devices [0.0]
We propose a new method for creating network connections interactively, dynamically, and directly in GPU memory.
We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models.
Both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies.
arXiv Detail & Related papers (2023-06-16T14:08:27Z) - TAP: Accelerating Large-Scale DNN Training Through Tensor Automatic
Parallelisation [19.009600866053923]
We present a model parallelism framework TAP that automatically searches for the best data and tensor parallel schedules.
Experiments show that TAP is $20times- 160times$ faster than the state-of-the-art automatic parallelism framework.
arXiv Detail & Related papers (2023-02-01T05:22:28Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
The paper tackles the challenge by designing a general framework to construct 3D learning architectures.
The proposed approach can be applied to general backbones like PointNet and DGCNN.
Experiments on ModelNet40, ShapeNet, and the real-world dataset ScanObjectNN, demonstrated that the method achieves a great trade-off between efficiency, rotation, and accuracy.
arXiv Detail & Related papers (2022-09-13T12:12:19Z) - Application of 2-D Convolutional Neural Networks for Damage Detection in
Steel Frame Structures [0.0]
We present an application of 2-D convolutional neural networks (2-D CNNs) designed to perform both feature extraction and classification stages.
The method uses a network of lighted CNNs instead of deep and takes raw acceleration signals as input.
arXiv Detail & Related papers (2021-10-29T16:29:31Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
Dual-view snapshot compressive imaging (SCI) aims to capture videos from two field-of-views (FoVs) in a single snapshot.
It is challenging for existing model-based decoding algorithms to reconstruct each individual scene.
We propose an optical flow-aided recurrent neural network for dual video SCI systems, which provides high-quality decoding in seconds.
arXiv Detail & Related papers (2021-09-11T14:24:44Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - RT3D: Achieving Real-Time Execution of 3D Convolutional Neural Networks
on Mobile Devices [57.877112704841366]
This paper proposes RT3D, a model compression and mobile acceleration framework for 3D CNNs.
For the first time, real-time execution of 3D CNNs is achieved on off-the-shelf mobiles.
arXiv Detail & Related papers (2020-07-20T02:05:32Z) - STH: Spatio-Temporal Hybrid Convolution for Efficient Action Recognition [39.58542259261567]
We present a novel S-Temporal Hybrid Network (STH) which simultaneously encodes spatial and temporal video information with a small parameter.
Such a design enables efficient-temporal modeling and maintains a small model scale.
STH enjoys performance superiority over 3D CNNs while maintaining an even smaller parameter cost than 2D CNNs.
arXiv Detail & Related papers (2020-03-18T04:46:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.