Advancing Retail Data Science: Comprehensive Evaluation of Synthetic Data
- URL: http://arxiv.org/abs/2406.13130v1
- Date: Wed, 19 Jun 2024 00:47:38 GMT
- Title: Advancing Retail Data Science: Comprehensive Evaluation of Synthetic Data
- Authors: Yu Xia, Chi-Hua Wang, Joshua Mabry, Guang Cheng,
- Abstract summary: This paper introduces a comprehensive framework for assessing synthetic retail data, focusing on fidelity, utility, and privacy.
Our approach differentiates between continuous and discrete data attributes, providing precise evaluation criteria.
Our findings validate that this framework provides reliable and scalable evaluation for synthetic retail data.
- Score: 13.139215811928931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evaluation of synthetic data generation is crucial, especially in the retail sector where data accuracy is paramount. This paper introduces a comprehensive framework for assessing synthetic retail data, focusing on fidelity, utility, and privacy. Our approach differentiates between continuous and discrete data attributes, providing precise evaluation criteria. Fidelity is measured through stability and generalizability. Stability ensures synthetic data accurately replicates known data distributions, while generalizability confirms its robustness in novel scenarios. Utility is demonstrated through the synthetic data's effectiveness in critical retail tasks such as demand forecasting and dynamic pricing, proving its value in predictive analytics and strategic planning. Privacy is safeguarded using Differential Privacy, ensuring synthetic data maintains a perfect balance between resembling training and holdout datasets without compromising security. Our findings validate that this framework provides reliable and scalable evaluation for synthetic retail data. It ensures high fidelity, utility, and privacy, making it an essential tool for advancing retail data science. This framework meets the evolving needs of the retail industry with precision and confidence, paving the way for future advancements in synthetic data methodologies.
Related papers
- SynthEval: A Framework for Detailed Utility and Privacy Evaluation of Tabular Synthetic Data [3.360001542033098]
SynthEval is a novel open-source evaluation framework for synthetic data.
It treats categorical and numerical attributes with equal care, without assuming any special kind of preprocessing steps.
Our tool leverages statistical and machine learning techniques to comprehensively evaluate synthetic data fidelity and privacy-preserving integrity.
arXiv Detail & Related papers (2024-04-24T11:49:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
Privacy poses a significant obstacle to the progress of learning analytics (LA), presenting challenges like inadequate anonymization and data misuse.
Synthetic data emerges as a potential remedy, offering robust privacy protection.
Prior LA research on synthetic data lacks thorough evaluation, essential for assessing the delicate balance between privacy and data utility.
arXiv Detail & Related papers (2024-01-12T20:27:55Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
The switch from a Model-Centric to a Data-Centric mindset is putting emphasis on data and its quality rather than algorithms.
In particular, the sensitive nature of the information in highly regulated scenarios needs to be accounted for.
A clever way to bypass such a conundrum relies on Synthetic Data: data obtained from a generative process, learning the real data properties.
arXiv Detail & Related papers (2022-04-13T10:53:54Z) - Holdout-Based Fidelity and Privacy Assessment of Mixed-Type Synthetic
Data [0.0]
AI-based data synthesis has seen rapid progress over the last several years, and is increasingly recognized for its promise to enable privacy-respecting data sharing.
We introduce and demonstrate a holdout-based empirical assessment framework for quantifying the fidelity as well as the privacy risk of synthetic data solutions.
arXiv Detail & Related papers (2021-04-01T17:30:23Z) - DeepCoDA: personalized interpretability for compositional health data [58.841559626549376]
Interpretability allows the domain-expert to evaluate the model's relevance and reliability.
In the healthcare setting, interpretable models should implicate relevant biological mechanisms independent of technical factors.
We define personalized interpretability as a measure of sample-specific feature attribution.
arXiv Detail & Related papers (2020-06-02T05:14:22Z) - Really Useful Synthetic Data -- A Framework to Evaluate the Quality of
Differentially Private Synthetic Data [2.538209532048867]
Recent advances in generating synthetic data that allow to add principled ways of protecting privacy are a crucial step in sharing statistical information in a privacy preserving way.
To further optimise the inherent trade-off between data privacy and data quality, it is necessary to think closely about the latter.
We develop a framework to evaluate the quality of differentially private synthetic data from an applied researcher's perspective.
arXiv Detail & Related papers (2020-04-16T16:24:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.