論文の概要: Analyzing Diversity in Healthcare LLM Research: A Scientometric Perspective
- arxiv url: http://arxiv.org/abs/2406.13152v1
- Date: Wed, 19 Jun 2024 02:00:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:38:44.241651
- Title: Analyzing Diversity in Healthcare LLM Research: A Scientometric Perspective
- Title(参考訳): 保健 LLM 研究における多様性の分析 : サイエントメトリック・パースペクティブ
- Authors: David Restrepo, Chenwei Wu, Constanza Vásquez-Venegas, João Matos, Jack Gallifant, Luis Filipe,
- Abstract要約: 本稿では,医療のための大規模言語モデル(LLM)研究の包括的科学的分析について述べる。
以上の結果から,男女差や地理的格差が顕著であり,男性作家の優位性が示唆された。
人工知能研究における多様性と傾斜度を高めるための実用的な戦略を提案する。
- 参考スコア(独自算出の注目度): 1.9351774578832834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deployment of large language models (LLMs) in healthcare has demonstrated substantial potential for enhancing clinical decision-making, administrative efficiency, and patient outcomes. However, the underrepresentation of diverse groups in the development and application of these models can perpetuate biases, leading to inequitable healthcare delivery. This paper presents a comprehensive scientometric analysis of LLM research for healthcare, including data from January 1, 2021, to June 16, 2024. By analyzing metadata from PubMed and Dimensions, including author affiliations, countries, and funding sources, we assess the diversity of contributors to LLM research. Our findings highlight significant gender and geographic disparities, with a predominance of male authors and contributions primarily from high-income countries (HICs). We introduce a novel journal diversity index based on Gini impurity to measure the inclusiveness of scientific publications. Our results underscore the necessity for greater representation in order to ensure the equitable application of LLMs in healthcare. We propose actionable strategies to enhance diversity and inclusivity in artificial intelligence research, with the ultimate goal of fostering a more inclusive and equitable future in healthcare innovation.
- Abstract(参考訳): 医療における大規模言語モデル (LLMs) の展開は, 臨床意思決定, 管理効率, 患者の予後を向上する大きな可能性を示唆している。
しかしながら、これらのモデルの開発と適用における多様なグループの過小評価はバイアスを持続させ、不平等な医療提供につながる可能性がある。
本稿では、2021年1月1日から2024年6月16日までのデータを含む、医療のためのLLM研究の総合的な科学的分析について述べる。
著者、国、資金源を含むPubMedおよびDimensionsのメタデータを分析することにより、LCM研究への貢献者の多様性を評価する。
高所得国(HICs)の男性作家や貢献者を中心に,男女差や地理的格差が顕著であった。
我々は,学術出版物の包括性を測定するために,ジニ不純物に基づく新しい雑誌多様性指標を導入する。
医療におけるLLMの適正な適用を確保するためには,より大きな表現の必要性を強調した。
我々は、人工知能研究における多様性と傾きを高めるための実行可能な戦略を提案し、医療革新においてより包括的で公平な未来を育むという究極の目標を掲げる。
関連論文リスト
- Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
SciRIFF(Scientific Resource for Instruction-Following and Finetuning, SciRIFF)は、54のタスクに対して137Kの命令追従デモのデータセットである。
SciRIFFは、幅広い科学分野の研究文献から情報を抽出し、合成することに焦点を当てた最初のデータセットである。
論文 参考訳(メタデータ) (2024-06-10T21:22:08Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [31.04135502285516]
大規模言語モデル(LLM)は、人間レベルの言語の生成と理解に優れた能力があることから、大きな注目を集めている。
LLMは医療分野において革新的で強力なアドジャンクとして出現し、伝統的なプラクティスを変革し、医療サービス強化の新しい時代を告げている。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - Mapping the Increasing Use of LLMs in Scientific Papers [99.67983375899719]
2020年1月から2024年2月にかけて、arXiv、bioRxiv、Natureのポートフォリオジャーナルで950,965の論文をまとめて、体系的で大規模な分析を行った。
計算機科学の論文では, LLMの使用が着実に増加し, 最大, 最速の成長が観察された。
論文 参考訳(メタデータ) (2024-04-01T17:45:15Z) - A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models [20.11590976578911]
大規模言語モデル(LLM)は、複雑な健康情報のニーズを満たすための大きな約束を持っている。
LLMは、有害性を導入し、健康格差を悪化させる可能性がある。
エクイティ関連モデル失敗の信頼性評価は、ヘルスエクイティを促進するシステムを開発するための重要なステップである。
論文 参考訳(メタデータ) (2024-03-18T17:56:37Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - Large Language Models in Mental Health Care: a Scoping Review [29.247717845238228]
大規模言語モデル(LLM)の利用の増加は、メンタルヘルスにおける応用と結果の包括的なレビューの必要性を刺激する。
このスコーピングレビューは、精神医療におけるLCMの既存の開発と応用を批判的に分析することを目的としている。
主な課題は、データの可用性と信頼性、精神状態の微妙な扱い、効果的な評価方法である。
論文 参考訳(メタデータ) (2024-01-01T17:35:52Z) - Large language models in healthcare and medical domain: A review [4.456243157307507]
大規模言語モデル(LLM)は、自由テキストクエリに対する熟練した応答を提供する。
このレビューでは、多様な医療応用の効率性と効果を増幅するLLMの可能性について考察する。
論文 参考訳(メタデータ) (2023-12-12T20:54:51Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。