AntibodyFlow: Normalizing Flow Model for Designing Antibody Complementarity-Determining Regions
- URL: http://arxiv.org/abs/2406.13162v1
- Date: Wed, 19 Jun 2024 02:31:23 GMT
- Title: AntibodyFlow: Normalizing Flow Model for Designing Antibody Complementarity-Determining Regions
- Authors: Bohao Xu, Yanbo Wang, Wenyu Chen, Shimin Shan,
- Abstract summary: Therapeutic antibodies are specialized protective proteins that bind to antigens in a lock-to-key manner.
The binding strength/affinity between an antibody and a specific antigen is heavily determined by the complementarity-determining regions (CDRs) on the antibodies.
Existing machine learning methods cast in silico development of CDRs as either sequence or 3D graph (with a single chain) generation tasks.
- Score: 9.427196604657215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Therapeutic antibodies have been extensively studied in drug discovery and development in the past decades. Antibodies are specialized protective proteins that bind to antigens in a lock-to-key manner. The binding strength/affinity between an antibody and a specific antigen is heavily determined by the complementarity-determining regions (CDRs) on the antibodies. Existing machine learning methods cast in silico development of CDRs as either sequence or 3D graph (with a single chain) generation tasks and have achieved initial success. However, with CDR loops having specific geometry shapes, learning the 3D geometric structures of CDRs remains a challenge. To address this issue, we propose AntibodyFlow, a 3D flow model to design antibody CDR loops. Specifically, AntibodyFlow first constructs the distance matrix, then predicts amino acids conditioned on the distance matrix. Also, AntibodyFlow conducts constraint learning and constrained generation to ensure valid 3D structures. Experimental results indicate that AntibodyFlow outperforms the best baseline consistently with up to 16.0% relative improvement in validity rate and 24.3% relative reduction in geometric graph level error (root mean square deviation, RMSD).
Related papers
- Efficient Antibody Structure Refinement Using Energy-Guided SE(3) Flow Matching [16.192361788505558]
FlowAB is a novel antibody structure refinement method based on energy-guided flow matching.
It achieves new state-of-the-art performance on the antibody structure prediction task when used in conjunction with an appropriate prior model.
arXiv Detail & Related papers (2024-10-22T04:13:55Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - Conditional Antibody Design as 3D Equivariant Graph Translation [28.199522831859998]
We propose Multi-channel Equivariant Attention Network (MEAN) to co-design 1D sequences and 3D structures of CDRs.
Our method significantly surpasses state-of-the-art models in sequence and structure modeling, antigen-binding CDR design, and binding affinity optimization.
arXiv Detail & Related papers (2022-08-12T01:00:59Z) - AntBO: Towards Real-World Automated Antibody Design with Combinatorial
Bayesian Optimisation [53.43922443725598]
We present AntBO: a Combinatorial optimisation algorithm enabling efficient in silico design of the CDRH3 region.
To benchmark AntBO, we use the Absolut! software suite as a black-box oracle because it can score the target specificity and affinity of designed antibodies in silico.
In under 200 protein designs, AntBO can suggest antibody sequences that outperform the best binding sequence drawn from 6.9 million experimentally obtained CDRH3s.
arXiv Detail & Related papers (2022-01-29T12:03:04Z) - Simple End-to-end Deep Learning Model for CDR-H3 Loop Structure
Prediction [0.0]
We present an end-to-end model to predict CDR H3 loop structure, that performs on par with state-of-the-art methods.
We also raise an issue with a commonly used RosettaAntibody benchmark that leads to data leaks.
arXiv Detail & Related papers (2021-11-20T18:55:09Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.