Efficient Antibody Structure Refinement Using Energy-Guided SE(3) Flow Matching
- URL: http://arxiv.org/abs/2410.16673v1
- Date: Tue, 22 Oct 2024 04:13:55 GMT
- Title: Efficient Antibody Structure Refinement Using Energy-Guided SE(3) Flow Matching
- Authors: Jiying Zhang, Zijing Liu, Shengyuan Bai, He Cao, Yu Li, Lei Zhang,
- Abstract summary: FlowAB is a novel antibody structure refinement method based on energy-guided flow matching.
It achieves new state-of-the-art performance on the antibody structure prediction task when used in conjunction with an appropriate prior model.
- Score: 16.192361788505558
- License:
- Abstract: Antibodies are proteins produced by the immune system that recognize and bind to specific antigens, and their 3D structures are crucial for understanding their binding mechanism and designing therapeutic interventions. The specificity of antibody-antigen binding predominantly depends on the complementarity-determining regions (CDR) within antibodies. Despite recent advancements in antibody structure prediction, the quality of predicted CDRs remains suboptimal. In this paper, we develop a novel antibody structure refinement method termed FlowAB based on energy-guided flow matching. FlowAB adopts the powerful deep generative method SE(3) flow matching and simultaneously incorporates important physical prior knowledge into the flow model to guide the generation process. The extensive experiments demonstrate that FlowAB can significantly improve the antibody CDR structures. It achieves new state-of-the-art performance on the antibody structure prediction task when used in conjunction with an appropriate prior model while incurring only marginal computational overhead. This advantage makes FlowAB a practical tool in antibody engineering.
Related papers
- AntibodyFlow: Normalizing Flow Model for Designing Antibody Complementarity-Determining Regions [9.427196604657215]
Therapeutic antibodies are specialized protective proteins that bind to antigens in a lock-to-key manner.
The binding strength/affinity between an antibody and a specific antigen is heavily determined by the complementarity-determining regions (CDRs) on the antibodies.
Existing machine learning methods cast in silico development of CDRs as either sequence or 3D graph (with a single chain) generation tasks.
arXiv Detail & Related papers (2024-06-19T02:31:23Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
We tackle antigen-specific antibody sequence-structure co-design as an optimization problem towards specific preferences.
We propose direct energy-based preference optimization to guide the generation of antibodies with both rational structures and considerable binding affinities to given antigens.
arXiv Detail & Related papers (2024-03-25T09:41:49Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - AntBO: Towards Real-World Automated Antibody Design with Combinatorial
Bayesian Optimisation [53.43922443725598]
We present AntBO: a Combinatorial optimisation algorithm enabling efficient in silico design of the CDRH3 region.
To benchmark AntBO, we use the Absolut! software suite as a black-box oracle because it can score the target specificity and affinity of designed antibodies in silico.
In under 200 protein designs, AntBO can suggest antibody sequences that outperform the best binding sequence drawn from 6.9 million experimentally obtained CDRH3s.
arXiv Detail & Related papers (2022-01-29T12:03:04Z) - Simple End-to-end Deep Learning Model for CDR-H3 Loop Structure
Prediction [0.0]
We present an end-to-end model to predict CDR H3 loop structure, that performs on par with state-of-the-art methods.
We also raise an issue with a commonly used RosettaAntibody benchmark that leads to data leaks.
arXiv Detail & Related papers (2021-11-20T18:55:09Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.