論文の概要: QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism
- arxiv url: http://arxiv.org/abs/2406.13167v2
- Date: Thu, 26 Sep 2024 09:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:22:29.849181
- Title: QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism
- Title(参考訳): QRMeM: 質問とリフレクション記憶機構による長さ制限の解き方
- Authors: Bo Wang, Heyan Huang, Yixin Cao, Jiahao Ying, Wei Tang, Chong Feng,
- Abstract要約: メモリメカニズムは、長いコンテキストを管理するための柔軟なソリューションを提供する。
本稿では,二重構造メモリプールを組み込んだ新しい手法であるQRMeMを提案する。
マルチチョイス質問 (MCQ) とマルチドキュメント質問応答 (Multi-doc QA) のベンチマークによる評価では,既存手法と比較してQRMeMの性能が向上している。
- 参考スコア(独自算出の注目度): 46.441032033076034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While large language models (LLMs) have made notable advancements in natural language processing, they continue to struggle with processing extensive text. Memory mechanism offers a flexible solution for managing long contexts, utilizing techniques such as compression, summarization, and structuring to facilitate nuanced and efficient handling of large volumes of text. However, existing techniques face challenges with static knowledge integration, leading to insufficient adaptation to task-specific needs and missing multi-segmentation relationships, which hinders the dynamic reorganization and logical combination of relevant segments during the response process. To address these issues, we introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool. This pool synergizes static textual content with structured graph guidance, fostering a reflective trial-and-error approach for navigating and identifying relevant segments. Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.
- Abstract(参考訳): 大きな言語モデル(LLM)は自然言語処理において顕著な進歩を遂げてきたが、広範なテキスト処理に苦戦し続けている。
メモリメカニズムは、圧縮、要約、構造化といった技術を活用して、大量のテキストのニュアンスで効率的な処理を容易にする、長いコンテキストを管理する柔軟なソリューションを提供する。
しかし、既存の技術は静的知識統合による課題に直面しており、タスク固有のニーズへの適応が不十分であり、またマルチセグメント関係が欠如しているため、応答過程において関連するセグメントの動的再編成と論理的組み合わせを妨げている。
これらの問題に対処するために、二層構造メモリプールを組み込んだ新しい戦略、QRMeMを導入する。
このプールは、構造化されたグラフガイダンスで静的テキストコンテンツを相乗化し、関連するセグメントをナビゲートし識別するための反射的試行錯誤アプローチを促進する。
マルチチョイス質問 (MCQ) とマルチドキュメント質問応答 (Multi-doc QA) のベンチマークによる評価では,既存手法と比較してQRMeMの性能が向上している。
関連論文リスト
- Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs [23.960451986662996]
本稿では,レトリーバル拡張生成(RAG)を特殊エンジニアリングとチェーンオブ思考推論によりエミュレートする手法を提案する。
我々は,BABILong から選択したタスクに対するアプローチを評価し,大量の散逸テキストを用いた標準 bAbI QA 問題をインターリーブする。
論文 参考訳(メタデータ) (2025-02-18T02:49:40Z) - Elevating Legal LLM Responses: Harnessing Trainable Logical Structures and Semantic Knowledge with Legal Reasoning [19.477062052536887]
意味と論理的コヒーレンスを橋渡しする教師ありフレームワークである論理・意味統合モデル(LSIM)を提案する。
LSIMは3つの要素から構成される: 強化学習は各質問に対して構造化されたファクトルールチェーンを予測し、訓練可能なDeep Structured Semantic Model(DSSM)は最も関連性の高い質問を検索し、回答内学習は最終回答を生成する。
LSIMが従来の手法に比べて精度と信頼性を著しく向上させるような,自動測定と人的評価デーモンレートによる実世界の法的データセットのQA検証実験を行った。
論文 参考訳(メタデータ) (2025-02-11T19:33:07Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
本研究では,マルチレベルセマンティック構造を通じてトークンの表現を再定義する手段として,階層的な埋め込み拡張を導入する。
その結果、より長い入力シーケンスに対して処理オーバーヘッドが大幅に削減され、計算効率が大幅に向上した。
トークン表現とメモリ構成を動的に調整する能力は、様々な予測不可能な入力条件下でモデルの堅牢性に寄与した。
論文 参考訳(メタデータ) (2025-01-23T22:20:36Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
大規模言語モデル(LLM)の性能向上を目的としたLong Question Coreference Adaptation (LQCA) 手法を提案する。
このフレームワークは、長いコンテキストに合わせて調整されたコア参照解決に焦点を当てており、モデルが参照を効果的に識別し、管理することができる。
このフレームワークはLLMの扱いやすいパーティションを提供し、理解を深める。
論文 参考訳(メタデータ) (2024-10-02T15:39:55Z) - Do LLMs suffer from Multi-Party Hangover? A Diagnostic Approach to Addressee Recognition and Response Selection in Conversations [11.566214724241798]
本研究では,会話の特定の構造的属性間でのモデル性能を調査する手法を提案する。
我々はモデルの弱点を診断するために、応答選択とアドレス認識タスクに焦点をあてる。
その結果、応答選択は会話のテキストの内容に依存しており、アドレス認識ではその構造的次元を捉える必要があることがわかった。
論文 参考訳(メタデータ) (2024-09-27T10:07:33Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
質問応答(QA)では、異なる質問を異なる回答戦略で効果的に扱うことができる。
本稿では,各質問に対して最適なQA戦略を適応的に選択する動的手法を提案する。
提案手法は,複数のモジュールを持つQAシステムの適応的オーケストレーションに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-20T12:28:18Z) - Thread of Thought Unraveling Chaotic Contexts [133.24935874034782]
思考のスレッド(ThoT)戦略は、人間の認知プロセスからインスピレーションを得ている。
実験では、他のプロンプト技術と比較して、ThoTは推論性能を著しく改善する。
論文 参考訳(メタデータ) (2023-11-15T06:54:44Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
我々は,長いコンテキストを要約ノードのツリーに処理する手法であるMemWalkerを紹介した。クエリを受信すると,モデルがこのツリーをナビゲートして関連する情報を検索し,十分な情報を収集すると応答する。
その結果,MemWalkerは,テキストを対話的に読み取る際の推論ステップを強調し,クエリに関連するテキストセグメントをピンポイントすることで,説明性の向上を図っている。
論文 参考訳(メタデータ) (2023-10-08T06:18:14Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。