Towards Trustworthy Unsupervised Domain Adaptation: A Representation Learning Perspective for Enhancing Robustness, Discrimination, and Generalization
- URL: http://arxiv.org/abs/2406.13180v1
- Date: Wed, 19 Jun 2024 03:19:34 GMT
- Title: Towards Trustworthy Unsupervised Domain Adaptation: A Representation Learning Perspective for Enhancing Robustness, Discrimination, and Generalization
- Authors: Jia-Li Yin, Haoyuan Zheng, Ximeng Liu,
- Abstract summary: Robust Unsupervised Domain Adaptation (RoUDA) aims to achieve not only clean but also robust cross-domain knowledge transfer.
We design a novel algorithm by utilizing the mutual information theory, dubbed MIRoUDA.
Our method surpasses the state-of-the-arts by a large margin.
- Score: 31.176062426569068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust Unsupervised Domain Adaptation (RoUDA) aims to achieve not only clean but also robust cross-domain knowledge transfer from a labeled source domain to an unlabeled target domain. A number of works have been conducted by directly injecting adversarial training (AT) in UDA based on the self-training pipeline and then aiming to generate better adversarial examples (AEs) for AT. Despite the remarkable progress, these methods only focus on finding stronger AEs but neglect how to better learn from these AEs, thus leading to unsatisfied results. In this paper, we investigate robust UDA from a representation learning perspective and design a novel algorithm by utilizing the mutual information theory, dubbed MIRoUDA. Specifically, through mutual information optimization, MIRoUDA is designed to achieve three characteristics that are highly expected in robust UDA, i.e., robustness, discrimination, and generalization. We then propose a dual-model framework accordingly for robust UDA learning. Extensive experiments on various benchmarks verify the effectiveness of the proposed MIRoUDA, in which our method surpasses the state-of-the-arts by a large margin.
Related papers
- Prompt-based Distribution Alignment for Unsupervised Domain Adaptation [42.77798810726824]
We experimentally demonstrate that the unsupervised-trained visual-language models (VLMs) can significantly reduce the distribution discrepancy between source and target domains.
A major challenge for directly deploying such models on downstream UDA tasks is prompt engineering.
We propose a Prompt-based Distribution Alignment (PDA) method to incorporate the domain knowledge into prompt learning.
arXiv Detail & Related papers (2023-12-15T06:15:04Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Can We Evaluate Domain Adaptation Models Without Target-Domain Labels? [36.05871459064825]
Unsupervised domain adaptation (UDA) involves adapting a model trained on a label-rich source domain to an unlabeled target domain.
In real-world scenarios, the absence of target-domain labels makes it challenging to evaluate the performance of UDA models.
We propose a novel metric called the textitTransfer Score to address these issues.
arXiv Detail & Related papers (2023-05-30T03:36:40Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
This paper presents an unsupervised domain adaptation (UDA) method for predicting unlabeled target domain data.
We propose the Adversarial self-superVised domain Adaptation network for the TARget domain (AVATAR) algorithm.
Our proposed model significantly outperforms state-of-the-art methods on three UDA benchmarks.
arXiv Detail & Related papers (2023-04-28T20:31:56Z) - Prior Knowledge Guided Unsupervised Domain Adaptation [82.9977759320565]
We propose a Knowledge-guided Unsupervised Domain Adaptation (KUDA) setting where prior knowledge about the target class distribution is available.
In particular, we consider two specific types of prior knowledge about the class distribution in the target domain: Unary Bound and Binary Relationship.
We propose a rectification module that uses such prior knowledge to refine model generated pseudo labels.
arXiv Detail & Related papers (2022-07-18T18:41:36Z) - Exploring Adversarially Robust Training for Unsupervised Domain
Adaptation [71.94264837503135]
Unsupervised Domain Adaptation (UDA) methods aim to transfer knowledge from a labeled source domain to an unlabeled target domain.
This paper explores how to enhance the unlabeled data robustness via AT while learning domain-invariant features for UDA.
We propose a novel Adversarially Robust Training method for UDA accordingly, referred to as ARTUDA.
arXiv Detail & Related papers (2022-02-18T17:05:19Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model ADaptation (UMAD) framework handles both UDA scenarios without access to source data.
We develop an informative consistency score to help distinguish unknown samples from known samples.
Experiments on open-set and open-partial-set UDA scenarios demonstrate that UMAD exhibits comparable, if not superior, performance to state-of-the-art data-dependent methods.
arXiv Detail & Related papers (2021-12-16T01:22:59Z) - Adversarial Robustness for Unsupervised Domain Adaptation [48.51898925429575]
In this work, we leverage intermediate representations learned by multiple robust ImageNet models to improve the robustness of UDA models.
Our method works by aligning the features of the UDA model with the robust features learned by ImageNet pre-trained models along with domain adaptation training.
arXiv Detail & Related papers (2021-09-02T13:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.