Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection
- URL: http://arxiv.org/abs/2308.16763v2
- Date: Thu, 7 Sep 2023 09:15:24 GMT
- Title: Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection
- Authors: Kairui Hu, Ming Yan, Joey Tianyi Zhou, Ivor W. Tsang, Wen Haw Chong,
Yong Keong Yap
- Abstract summary: We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
- Score: 73.31406286956535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stance detection aims to identify the attitude expressed in a document
towards a given target. Techniques such as Chain-of-Thought (CoT) prompting
have advanced this task, enhancing a model's reasoning capabilities through the
derivation of intermediate rationales. However, CoT relies primarily on a
model's pre-trained internal knowledge during reasoning, thereby neglecting the
valuable external information that is previously unknown to the model. This
omission, especially within the unsupervised reasoning process, can affect the
model's overall performance. Moreover, while CoT enhances Large Language Models
(LLMs), smaller LMs, though efficient operationally, face challenges in
delivering nuanced reasoning. In response to these identified gaps, we
introduce the Ladder-of-Thought (LoT) for the stance detection task.
Constructed through a dual-phase Progressive Optimization Framework, LoT
directs the small LMs to assimilate high-quality external knowledge, refining
the intermediate rationales produced. These bolstered rationales subsequently
serve as the foundation for more precise predictions - akin to how a ladder
facilitates reaching elevated goals. LoT achieves a balance between efficiency
and performance. Our empirical evaluations underscore LoT's efficacy, marking a
16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT
on stance detection task.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Deep Hidden Cognition Facilitates Reliable Chain-of-Thought Reasoning [33.30315111732609]
Chain of Thought (CoT) reasoning has demonstrated remarkable deep reasoning capabilities.<n>However, its reliability is often undermined by the accumulation of errors in intermediate steps.<n>This paper introduces an approach to calibrate the CoT reasoning accuracy by leveraging the model's intrinsic veracity encoding.
arXiv Detail & Related papers (2025-07-14T07:41:35Z) - KAT-V1: Kwai-AutoThink Technical Report [50.84483585850113]
We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks.<n>KAT dynamically switches between reasoning and non-reasoning modes based on task complexity.<n>We also propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework.
arXiv Detail & Related papers (2025-07-11T04:07:10Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
Recent advancements in large reasoning models (LRMs) have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT)<n>We propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint during the token generation of the reasoning process.<n>Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well.
arXiv Detail & Related papers (2025-06-23T16:20:44Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - SEAL: Steerable Reasoning Calibration of Large Language Models for Free [58.190800043449336]
Large Language Models (LLMs) have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism.
Recent studies reveal substantial redundancy in the CoT reasoning traces, which negatively impacts model performance.
We introduce SEAL, a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains.
arXiv Detail & Related papers (2025-04-07T02:42:07Z) - Efficient Inference for Large Reasoning Models: A Survey [42.61170621552432]
Large Reasoning Models (LRMs) significantly improve the reasoning ability of Large Language Models (LLMs) by learning to reason.
However, their deliberative reasoning process leads to inefficiencies in token usage, memory consumption, and inference time.
This survey provides a review of efficient inference methods designed specifically for LRMs, focusing on mitigating token inefficiency while preserving the reasoning quality.
arXiv Detail & Related papers (2025-03-29T13:27:46Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)
We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.
Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.
Specifically, our framework quantifies the information gain' at each reasoning step, enabling the identification of failure modes.
We demonstrate the efficacy of our approach through extensive experiments on toy and GSM-8K data, where it significantly outperforms existing outcome-based methods.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
We investigate the effectiveness of test-time training (TTT) as a mechanism for improving models' reasoning capabilities.
TTT significantly improves performance on ARC tasks, achieving up to 6x improvement in accuracy compared to base fine-tuned models.
Our findings suggest that explicit symbolic search is not the only path to improved abstract reasoning in neural language models.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - Rational Metareasoning for Large Language Models [5.5539136805232205]
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs)
This work introduces a novel approach based on computational models of metareasoning used in cognitive science.
We develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning.
arXiv Detail & Related papers (2024-10-07T23:48:52Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
The Chain-of-Thought (CoT) paradigm has emerged as a critical approach for enhancing the reasoning capabilities of large language models (LLMs)
We propose the textbfStrategic Chain-of-Thought (SCoT) to refine LLM performance by integrating strategic knowledge prior to generating intermediate reasoning steps.
SCoT employs a two-stage approach within a single prompt: first eliciting an effective problem-solving strategy, which is then used to guide the generation of high-quality CoT paths and final answers.
arXiv Detail & Related papers (2024-09-05T06:28:05Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
We propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories.
Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework.
arXiv Detail & Related papers (2024-02-01T15:18:33Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
We argue that in guided decoding, assessing the potential of an incomplete reasoning path can be more advantageous than simply ensuring per-step correctness.
Inspired by the findings that $textitoutcome supervision for guided decoding essentially acts as a value model, we propose Outcome-supervised Value Model (OVM)
Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model.
arXiv Detail & Related papers (2023-11-16T09:56:28Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.