論文の概要: Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment
- arxiv url: http://arxiv.org/abs/2406.13216v1
- Date: Wed, 19 Jun 2024 04:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:09:15.541804
- Title: Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment
- Title(参考訳): 教師なしグラフアライメントにおける表現性向上のための最適輸送と埋め込みに基づくアプローチ
- Authors: Songyang Chen, Yu Liu, Lei Zou, Zexuan Wang, Youfang Lin, Yuxing Chen, Anqun Pan,
- Abstract要約: 教師なしグラフアライメントは、グラフ構造とノード特徴のみを利用して、属性グラフのペア間の1対1ノード対応を見つける。
モデル表現性の理論的解析によって動機付けられたそれらの利点を組み合わせるための原理的アプローチを提案する。
我々は,問題を最大重み付けに還元することで,一対一のマッチング制約を最初に保証する。
- 参考スコア(独自算出の注目度): 19.145556156889064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features. One category of existing works first computes the node representation and then matches nodes with close embeddings, which is intuitive but lacks a clear objective tailored for graph alignment in the unsupervised setting. The other category reduces the problem to optimal transport (OT) via Gromov-Wasserstein (GW) learning with a well-defined objective but leaves a large room for exploring the design of transport cost. We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness. By noticing the limitation of discriminative power in separating matched and unmatched node pairs, we improve the cost design of GW learning with feature transformation, which enables feature interaction across dimensions. Besides, we propose a simple yet effective embedding-based heuristic inspired by the Weisfeiler-Lehman test and add its prior knowledge to OT for more expressiveness when handling non-Euclidean data. Moreover, we are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching. The algorithm design effectively combines our OT and embedding-based predictions via stacking, an ensemble learning strategy. We propose a model framework named \texttt{CombAlign} integrating all the above modules to refine node alignment progressively. Through extensive experiments, we demonstrate significant improvements in alignment accuracy compared to state-of-the-art approaches and validate the effectiveness of the proposed modules.
- Abstract(参考訳): 教師なしグラフアライメントは、グラフ構造とノード特徴のみを活用することで、属性グラフのペア間の1対1ノード対応を見つける。
既存の研究の1つのカテゴリは、まずノード表現を計算し、次にノードを密着した埋め込みとマッチングする。
他のカテゴリでは、Gromov-Wasserstein (GW) 学習による最適輸送 (OT) への問題を減らすが、輸送コストの設計を探求するための大きな空間を残している。
モデル表現性の理論的解析によって動機付けられたそれらの利点を組み合わせるための原理的アプローチを提案する。
一致したノード対と一致しないノード対を分離する際の識別力の限界に気付くことにより、GW学習のコスト設計を特徴変換により改善し、次元間の特徴的相互作用を可能にする。
さらに,Weisfeiler-Lehmanテストにインスパイアされた単純かつ効果的な埋め込みに基づくヒューリスティックを提案し,非ユークリッドデータを扱う際に,その事前知識をOTに付加する。
さらに,この問題を最大ウェイトマッチングに還元することで,一対一のマッチング制約を初めて保証する。
アルゴリズム設計は、我々のOTと埋め込みベースの予測を、アンサンブル学習戦略である積み重ねによって効果的に組み合わせる。
本稿では,ノードアライメントを段階的に洗練するために,上記のモジュールをすべて統合したモデルフレームワークであるtexttt{CombAlign}を提案する。
広範囲な実験により,最先端手法と比較してアライメント精度が大幅に向上し,提案手法の有効性が検証された。
関連論文リスト
- Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings [8.858596502294471]
ノードワイドの反発は、集合的に、ノード埋め込み次元の近似的な再中心化であることを示す。
本稿では,教師付きあるいは教師なしのアルゴリズムを高速化するアルゴリズム拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-30T19:43:01Z) - Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport
Framework [33.77930081327417]
本稿では,不均衡な階層的最適輸送フレームワークに基づく,新しい頑健なグラフマッチング手法を提案する。
グラフマッチングにおいて、クロスモーダルアライメントを利用するための最初の試みを行う。
様々なグラフマッチングタスクの実験は、最先端の手法と比較して、我々の手法の優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-18T16:16:53Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
グラフニューラルネットワーク(GNN)は、近傍の集約をコアコンポーネントとして使用し、近接ノード間の機能を滑らかにする。
この問題に対処するため、我々は2つのグラフビューでグラフを強化し、ノードは最も類似した特徴や局所構造を持つものと直接リンクする。
生成したビューと元のグラフをまたいだ表現の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T15:38:36Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。