論文の概要: CombAlign: Enhancing Model Expressiveness in Unsupervised Graph Alignment
- arxiv url: http://arxiv.org/abs/2406.13216v2
- Date: Thu, 01 May 2025 10:13:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.833467
- Title: CombAlign: Enhancing Model Expressiveness in Unsupervised Graph Alignment
- Title(参考訳): CombAlign:教師なしグラフアライメントにおけるモデル表現性向上
- Authors: Songyang Chen, Yu Liu, Lei Zou, Zexuan Wang, Youfang Lin,
- Abstract要約: 教師なしグラフアライメント(英語版)は、グラフ構造とノード特徴のみを活用することにより、一対のグラフ間のノード対応を見つける。
最近の研究の1つのカテゴリは、まずノード表現を計算し、次に最も大きな埋め込みベースの類似性を持つノードとマッチングする。
他のカテゴリは、Gromov-Wasserstein学習による最適輸送(OT)に問題を還元する。
一致したノード対と一致しないノード対を2つのグラフで区別する際のモデルの識別力について検討する。
理論解析により,より強い表現力を持つCombAlignというハイブリッドアプローチを提唱した。
- 参考スコア(独自算出の注目度): 19.502687203792547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph alignment finds the node correspondence between a pair of attributed graphs by only exploiting graph structure and node features. One category of recent studies first computes the node representation and then matches nodes with the largest embedding-based similarity, while the other category reduces the problem to optimal transport (OT) via Gromov-Wasserstein learning. However, it remains largely unexplored in the model expressiveness, as well as how theoretical expressivity impacts prediction accuracy. We investigate the model expressiveness from two aspects. First, we characterize the model's discriminative power in distinguishing matched and unmatched node pairs across two graphs.Second, we study the model's capability of guaranteeing node matching properties such as one-to-one matching and mutual alignment. Motivated by our theoretical analysis, we put forward a hybrid approach named CombAlign with stronger expressive power. Specifically, we enable cross-dimensional feature interaction for OT-based learning and propose an embedding-based method inspired by the Weisfeiler-Lehman test. We also apply non-uniform marginals obtained from the embedding-based modules to OT as priors for more expressiveness. Based on that, we propose a traditional algorithm-based refinement, which combines our OT and embedding-based predictions using the ensemble learning strategy and reduces the problem to maximum weight matching. With carefully designed edge weights, we ensure those matching properties and further enhance prediction accuracy. By extensive experiments, we demonstrate a significant improvement of 14.5% in alignment accuracy compared to state-of-the-art approaches and confirm the soundness of our theoretical analysis.
- Abstract(参考訳): 教師なしグラフアライメントは、グラフ構造とノード特徴のみを利用して、一対の属性グラフ間のノード対応を見つける。
最近の研究の1つのカテゴリはまずノード表現を計算し、次にノードを最大の埋め込みベースの類似性とマッチングし、もう1つのカテゴリはGromov-Wasserstein学習による最適輸送(OT)に問題を還元する。
しかし、モデル表現性や理論表現性が予測精度に与える影響については明らかにされていない。
モデル表現性を2つの側面から検討する。
まず、一致したノード対と一致していないノード対を2つのグラフで区別する際のモデルの識別力を特徴付け、そのモデルが1対1のマッチングや相互アライメントなどのノードマッチング特性を保証する能力について検討する。
理論解析により,より強い表現力を持つCombAlignというハイブリッドアプローチを提唱した。
具体的には,OTに基づく学習のための多次元的特徴相互作用を実現し,Weisfeiler-Lehmanテストに触発された埋め込み型手法を提案する。
また, 埋め込み型加群から得られる一様でない余節を, より表現力を高めるための先行としてOTに適用する。
そこで本研究では,従来のアルゴリズムに基づく改良手法を提案する。この手法は,アンサンブル学習戦略を用いて,OTと埋め込みに基づく予測を組み合わせ,問題を最大重みマッチングに還元する。
エッジウェイトを慎重に設計し、それらのマッチング特性を確実にし、予測精度をさらに高める。
大規模な実験により、最先端の手法と比較して14.5%のアライメント精度が向上し、理論解析の健全性を確認した。
関連論文リスト
- A Hybrid Supervised and Self-Supervised Graph Neural Network for Edge-Centric Applications [0.0]
本稿では,2つのノード間の関係(エッジ中心タスク)を含むタスクを対象とした,グラフに基づく新しいディープラーニングモデルを提案する。
このモデルは教師付き学習と自己教師型学習を組み合わせ、学習した埋め込みとパターンが真実と無関係に学習される損失関数を考慮に入れている。
実験により、タンパク質間相互作用予測と遺伝子オントロジー(GO)用語予測の既存の手法と一致するか、超えるかを示す。
論文 参考訳(メタデータ) (2025-01-21T17:26:15Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport Framework [30.05543844763625]
本稿では,不均衡な階層的最適輸送フレームワークに基づく,新しい頑健なグラフマッチング手法を提案する。
グラフマッチングにおいて、クロスモーダルアライメントを利用するための最初の試みを行う。
様々なグラフマッチングタスクの実験は、最先端の手法と比較して、我々の手法の優越性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-10-18T16:16:53Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - Entropy Neural Estimation for Graph Contrastive Learning [9.032721248598088]
グラフ上のコントラスト学習は、ノードの区別可能な高レベル表現を抽出することを目的としている。
本稿では,データセットのビュー間のペアワイズ表現を対比する,単純かつ効果的なサブセットサンプリング戦略を提案する。
7つのグラフベンチマークで広範な実験を行い、提案手法は競合性能を実現する。
論文 参考訳(メタデータ) (2023-07-26T03:55:08Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Deep Probabilistic Graph Matching [72.6690550634166]
本稿では,マッチング制約を伴わずに,元のQAPに適合する深層学習ベースのグラフマッチングフレームワークを提案する。
提案手法は,一般的な3つのベンチマーク(Pascal VOC,Wilow Object,SPair-71k)で評価され,すべてのベンチマークにおいて過去の最先端よりも優れていた。
論文 参考訳(メタデータ) (2022-01-05T13:37:27Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
グラフニューラルネットワーク(GNN)は、近傍の集約をコアコンポーネントとして使用し、近接ノード間の機能を滑らかにする。
この問題に対処するため、我々は2つのグラフビューでグラフを強化し、ノードは最も類似した特徴や局所構造を持つものと直接リンクする。
生成したビューと元のグラフをまたいだ表現の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2021-06-07T15:38:36Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
本稿では,適応的拡張を用いた新しいグラフコントラスト表現学習法を提案する。
具体的には,ノードの集中度に基づく拡張スキームを設計し,重要な結合構造を明らかにする。
提案手法は,既存の最先端のベースラインを一貫して上回り,教師付きベースラインを超えている。
論文 参考訳(メタデータ) (2020-10-27T15:12:21Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。