論文の概要: Media Forensics and Deepfake Systematic Survey
- arxiv url: http://arxiv.org/abs/2406.13295v1
- Date: Wed, 19 Jun 2024 07:33:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 22:49:46.535820
- Title: Media Forensics and Deepfake Systematic Survey
- Title(参考訳): メディア調査とディープフェイクシステム
- Authors: Nadeem Jabbar CH, Aqib Saghir, Ayaz Ahmad Meer, Salman Ahmad Sahi, Bilal Hassan, Siddiqui Muhammad Yasir,
- Abstract要約: Deepfakeは、顔の特徴を非常に現実的な方法で生成または変更する、生成的なディープラーニングアルゴリズムである。
映画を良く見せるだけでなく、有名人を模倣して偽情報を広めるのにも使える。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deepfake is a generative deep learning algorithm that creates or changes facial features in a very realistic way making it hard to differentiate the real from the fake features It can be used to make movies look better as well as to spread false information by imitating famous people In this paper many different ways to make a Deepfake are explained analyzed and separated categorically Using Deepfake datasets models are trained and tested for reliability through experiments Deepfakes are a type of facial manipulation that allow people to change their entire faces identities attributes and expressions The trends in the available Deepfake datasets are also discussed with a focus on how they have changed Using Deep learning a general Deepfake detection model is made Moreover the problems in making and detecting Deepfakes are also mentioned As a result of this survey it is expected that the development of new Deepfake based imaging tools will speed up in the future This survey gives indepth review of methods for manipulating images of face and various techniques to spot altered face images Four types of facial manipulation are specifically discussed which are attribute manipulation expression swap entire face synthesis and identity swap Across every manipulation category we yield information on manipulation techniques significant benchmarks for technical evaluation of counterfeit detection techniques available public databases and a summary of the outcomes of all such analyses From all of the topics in the survey we focus on the most recent development of Deepfake showing its advances and obstacles in detecting fake images
- Abstract(参考訳): ディープフェイク(Deepfake)は、顔の特徴を非常に現実的な方法で生成または変更し、偽の特徴と現実を区別しにくくする生成的ディープラーニングアルゴリズムである。この論文では、有名人を模倣することによって、偽情報をより良く見せるのに使用できる。 この論文では、Deepfakeデータセットモデルを使用して、さまざまな方法でDeepfakeを分類して分離する。 ディープフェイクデータセットモデルは、実験を通じて信頼性を訓練し、テストする。ディープフェイクは、顔全体のアイデンティティ属性や表現を変更できる顔操作の一種である。ディープフェイクデータセットのトレンドは、Deep Learningを使用する一般的なディープフェイク検出モデルの使用に焦点をあてて議論される。
関連論文リスト
- DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion [94.46904504076124]
ディープフェイク技術は、顔交換を極めて現実的にし、偽造された顔コンテンツの使用に対する懸念を高めている。
既存の方法は、顔操作の多様な性質のため、目に見えない領域に一般化するのに苦労することが多い。
顔偽造者の生成過程を逆転させて検出モデルの一般化を促進する新しいフレームワークであるDiffusionFakeを紹介する。
論文 参考訳(メタデータ) (2024-10-06T06:22:43Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
本稿ではセマンティクス指向のDeepFake検出タスクをサポートするための自動データセット拡張手法を提案する。
また,顔画像とそれに対応するラベルを併用して予測を行う。
提案手法は,DeepFake検出の一般化性を向上し,人間の理解可能な説明を提供することで,ある程度のモデル解釈を行う。
論文 参考訳(メタデータ) (2024-08-29T07:11:50Z) - Semantic Contextualization of Face Forgery: A New Definition, Dataset, and Detection Method [77.65459419417533]
我々は,顔フォージェリを意味的文脈に配置し,意味的顔属性を変更する計算手法が顔フォージェリの源であることを定義した。
階層的なグラフで整理されたラベルの集合に各画像が関連付けられている大規模な顔偽画像データセットを構築した。
本稿では,ラベル関係を捕捉し,その優先課題を優先するセマンティクス指向の顔偽造検出手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T10:24:19Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Deepfake detection by exploiting surface anomalies: the SurFake approach [29.088218634944116]
本稿では, ディープフェイク生成が, 買収時のシーン全体の特性に与える影響について検討する。
画像に描かれた表面の特性を解析することにより、深度検出のためにCNNを訓練するのに使用できる記述子を得ることができる。
論文 参考訳(メタデータ) (2023-10-31T16:54:14Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
ディープフェイク技術の出現は、個人のプライバシーと公共の安全に脅威をもたらすため、社会的な問題となっている。
十分な偽の顔を集めることはほぼ不可能であり、既存の検出器があらゆる種類の操作に一般化することは困難である。
本稿では,大規模な実顔データセットから一般表現を学習することを目的としたリアルフェイスファウンデーション表現学習(RFFR)を提案する。
論文 参考訳(メタデータ) (2023-03-15T08:27:56Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - One-Shot GAN Generated Fake Face Detection [3.3707422585608953]
本稿では,汎用的なワンショットGAN生成顔検出手法を提案する。
提案手法は,シーン理解モデルを用いて顔から文脈外オブジェクトを抽出する。
実験の結果,文脈外の特徴の観点から,偽の顔と現実の顔とを識別できることが判明した。
論文 参考訳(メタデータ) (2020-03-27T05:51:14Z) - DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection [17.602598143822917]
このサーベイは、DeepFakeメソッドを含む顔画像を操作するテクニックのレビューを提供する。
特に、顔全体の合成、アイデンティティスワップ(ディープフェイク)、属性操作、式スワップの4種類の顔操作がレビューされている。
われわれは最新世代のDeepFakesに特に注意を払っており、フェイク検出の改善と課題を強調している。
論文 参考訳(メタデータ) (2020-01-01T09:54:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。