How effective is Multi-source pivoting for Translation of Low Resource Indian Languages?
- URL: http://arxiv.org/abs/2406.13332v1
- Date: Wed, 19 Jun 2024 08:31:52 GMT
- Title: How effective is Multi-source pivoting for Translation of Low Resource Indian Languages?
- Authors: Pranav Gaikwad, Meet Doshi, Raj Dabre, Pushpak Bhattacharyya,
- Abstract summary: This paper explores the'multi-source translation' approach with pivoting, using both source and pivot sentences to improve translation.
We find that multi-source pivoting yields marginal improvements over the state-of-the-art, contrary to previous claims.
- Score: 43.44411629370054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine Translation (MT) between linguistically dissimilar languages is challenging, especially due to the scarcity of parallel corpora. Prior works suggest that pivoting through a high-resource language can help translation into a related low-resource language. However, existing works tend to discard the source sentence when pivoting. Taking the case of English to Indian language MT, this paper explores the 'multi-source translation' approach with pivoting, using both source and pivot sentences to improve translation. We conducted extensive experiments with various multi-source techniques for translating English to Konkani, Manipuri, Sanskrit, and Bodo, using Hindi, Marathi, and Bengali as pivot languages. We find that multi-source pivoting yields marginal improvements over the state-of-the-art, contrary to previous claims, but these improvements can be enhanced with synthetic target language data. We believe multi-source pivoting is a promising direction for Low-resource translation.
Related papers
- Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
The transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language.
Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method.
arXiv Detail & Related papers (2024-06-28T08:59:24Z) - Investigating Multi-Pivot Ensembling with Massively Multilingual Machine Translation Models [47.91306228406407]
We revisit ways of pivoting through multiple languages.
We propose MaxEns, a novel combination strategy that makes the output biased towards the most confident predictions.
On average, multi-pivot strategies still lag behind using English as a single pivot language.
arXiv Detail & Related papers (2023-11-13T16:15:20Z) - The Best of Both Worlds: Combining Human and Machine Translations for
Multilingual Semantic Parsing with Active Learning [50.320178219081484]
We propose an active learning approach that exploits the strengths of both human and machine translations.
An ideal utterance selection can significantly reduce the error and bias in the translated data.
arXiv Detail & Related papers (2023-05-22T05:57:47Z) - Investigating Lexical Sharing in Multilingual Machine Translation for
Indian Languages [8.858671209228536]
We investigate lexical sharing in multilingual machine translation from Hindi, Gujarati, Nepali into English.
We find that transliteration does not give pronounced improvements.
Our analysis suggests that our multilingual MT models trained on original scripts seem to already be robust to cross-script differences.
arXiv Detail & Related papers (2023-05-04T23:35:15Z) - Improving Multilingual Neural Machine Translation System for Indic
Languages [0.0]
We propose a multilingual neural machine translation (MNMT) system to address the issues related to low-resource language translation.
A state-of-the-art transformer architecture is used to realize the proposed model.
Trials over a good amount of data reveal its superiority over the conventional models.
arXiv Detail & Related papers (2022-09-27T09:51:56Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
We present a continual pre-training framework on mBART to effectively adapt it to unseen languages.
Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline.
Our approach also boosts the performance on translation pairs where both languages are seen in the original mBART's pre-training.
arXiv Detail & Related papers (2021-05-09T14:49:07Z) - Simultaneous Multi-Pivot Neural Machine Translation [12.796775798210133]
In a simultaneous pivot NMT setting, using two pivot languages can lead to an improvement of up to 5.8 BLEU.
Our experiments in a low-resource setting using the N-way parallel UN corpus for Arabic to English NMT via French and Spanish as pivots reveals that in a simultaneous pivot NMT setting, using two pivot languages can lead to an improvement of up to 5.8 BLEU.
arXiv Detail & Related papers (2021-04-15T12:19:52Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Neural Machine Translation for Low-Resourced Indian Languages [4.726777092009554]
Machine translation is an effective approach to convert text to a different language without any human involvement.
In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam.
We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system.
arXiv Detail & Related papers (2020-04-19T17:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.