論文の概要: A Resource-Adaptive Approach for Federated Learning under Resource-Constrained Environments
- arxiv url: http://arxiv.org/abs/2406.13351v1
- Date: Wed, 19 Jun 2024 08:55:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 22:30:00.655108
- Title: A Resource-Adaptive Approach for Federated Learning under Resource-Constrained Environments
- Title(参考訳): 資源制約環境下でのフェデレーション学習のための資源適応型アプローチ
- Authors: Ruirui Zhang, Xingze Wu, Yifei Zou, Zhenzhen Xie, Peng Li, Xiuzhen Cheng, Dongxiao Yu,
- Abstract要約: 本稿では,不均一な制約リソースを持つ複数のクライアントを対象とする,基礎的連合学習(FL)問題について検討する。
資源適応型非同期フェデレーション学習アルゴリズムであるFed-RAAを提案する。
- 参考スコア(独自算出の注目度): 22.038826059430242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper studies a fundamental federated learning (FL) problem involving multiple clients with heterogeneous constrained resources. Compared with the numerous training parameters, the computing and communication resources of clients are insufficient for fast local training and real-time knowledge sharing. Besides, training on clients with heterogeneous resources may result in the straggler problem. To address these issues, we propose Fed-RAA: a Resource-Adaptive Asynchronous Federated learning algorithm. Different from vanilla FL methods, where all parameters are trained by each participating client regardless of resource diversity, Fed-RAA adaptively allocates fragments of the global model to clients based on their computing and communication capabilities. Each client then individually trains its assigned model fragment and asynchronously uploads the updated result. Theoretical analysis confirms the convergence of our approach. Additionally, we design an online greedy-based algorithm for fragment allocation in Fed-RAA, achieving fairness comparable to an offline strategy. We present numerical results on MNIST, CIFAR-10, and CIFAR-100, along with necessary comparisons and ablation studies, demonstrating the advantages of our work. To the best of our knowledge, this paper represents the first resource-adaptive asynchronous method for fragment-based FL with guaranteed theoretical convergence.
- Abstract(参考訳): 本稿では,不均一な制約リソースを持つ複数のクライアントを対象とする,基礎的連合学習(FL)問題について検討する。
多くのトレーニングパラメータと比較して、クライアントのコンピューティングとコミュニケーションリソースは、高速なローカルトレーニングとリアルタイム知識共有には不十分である。
さらに、異種リソースを持つクライアントでのトレーニングは、ストラグラー問題を引き起こす可能性がある。
これらの問題に対処するため,資源適応型非同期フェデレーション学習アルゴリズムであるFed-RAAを提案する。
バニラFLの手法とは異なり、全てのパラメータはリソースの多様性に関わらず各クライアントによって訓練される。
各クライアントは、割り当てられたモデルのフラグメントを個別にトレーニングし、更新された結果を非同期にアップロードする。
理論的解析は我々のアプローチの収束を裏付ける。
さらに,Fed-RAAにおけるフラグメントアロケーションのためのオンライングリーディベースアルゴリズムを設計し,オフライン戦略に匹敵する公平性を達成した。
MNIST, CIFAR-10, CIFAR-100について, 必要な比較, アブレーション研究を行い, 本研究の利点を実証した。
我々の知る限り、この論文は、理論収束を保証したフラグメントベースのFLのための最初のリソース適応非同期手法である。
関連論文リスト
- SFedCA: Credit Assignment-Based Active Client Selection Strategy for Spiking Federated Learning [15.256986486372407]
フェデレーション学習のスパイクにより、リソースに制約のあるデバイスは、ローカルデータを交換することなく、低消費電力で協調的にトレーニングできる。
既存のスパイキングフェデレーション学習手法では、クライアントのアグリゲーションに対してランダムな選択アプローチを採用しており、不偏なクライアントの参加を前提としている。
本研究では,グローバルなサンプル分布バランスに寄与するクライアントを鑑定するために,クレジット割当に基づくアクティブクライアント選択戦略であるSFedCAを提案する。
論文 参考訳(メタデータ) (2024-06-18T01:56:22Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
フェデレートラーニング(FL)では、クライアントデータの分散の性質と均一性は、機会と課題の両方を示します。
本稿では,FLトレーニングに参加するクライアントに対して適応的なアグリゲーション重みを割り当てるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-07T17:46:37Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - FedIN: Federated Intermediate Layers Learning for Model Heterogeneity [7.781409257429762]
フェデレートラーニング(FL)は、エッジデバイスがローカルおよびプライベートにトレーニングデータを維持しながら、グローバルな共有モデルを協調的にトレーニングすることを促進する。
本研究では,FedIN(Federated Intermediate Layers Learning)と呼ばれるFL手法を提案する。
実験結果から, 異種モデル環境におけるFedINの性能は, 最先端のアルゴリズムと比較して優れていた。
論文 参考訳(メタデータ) (2023-04-03T07:20:43Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。