High-probability minimax lower bounds
- URL: http://arxiv.org/abs/2406.13447v2
- Date: Thu, 4 Jul 2024 15:08:50 GMT
- Title: High-probability minimax lower bounds
- Authors: Tianyi Ma, Kabir A. Verchand, Richard J. Samworth,
- Abstract summary: We introduce the notion of a minimax quantile, and seek to articulate its dependence on the quantile level.
We develop high-probability variants of the classical Le Cam and Fano methods, as well as a technique to convert local minimax risk lower bounds to lower bounds on minimax quantiles.
- Score: 2.5993680263955947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The minimax risk is often considered as a gold standard against which we can compare specific statistical procedures. Nevertheless, as has been observed recently in robust and heavy-tailed estimation problems, the inherent reduction of the (random) loss to its expectation may entail a significant loss of information regarding its tail behaviour. In an attempt to avoid such a loss, we introduce the notion of a minimax quantile, and seek to articulate its dependence on the quantile level. To this end, we develop high-probability variants of the classical Le Cam and Fano methods, as well as a technique to convert local minimax risk lower bounds to lower bounds on minimax quantiles. To illustrate the power of our framework, we deploy our techniques on several examples, recovering recent results in robust mean estimation and stochastic convex optimisation, as well as obtaining several new results in covariance matrix estimation, sparse linear regression, nonparametric density estimation and isotonic regression. Our overall goal is to argue that minimax quantiles can provide a finer-grained understanding of the difficulty of statistical problems, and that, in wide generality, lower bounds on these quantities can be obtained via user-friendly tools.
Related papers
- A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Minimax Linear Regression under the Quantile Risk [31.277788690403522]
We study the problem of designing minimax procedures in linear regression under the quantile risk.
We prove a matching upper bound on the worst-case quantile risk of a variant of the recently proposed min-max regression procedure.
arXiv Detail & Related papers (2024-06-17T23:24:14Z) - Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled
Gradient Descent, Even with Overparameterization [48.65416821017865]
This chapter introduces a new algorithmic approach, dubbed scaled gradient (ScaledGD)
It converges linearly at a constant rate independent of the condition number of the low-rank object.
It maintains the low periteration cost of gradient descent for a variety of tasks.
arXiv Detail & Related papers (2023-10-09T21:16:57Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - A Local Convergence Theory for the Stochastic Gradient Descent Method in
Non-Convex Optimization With Non-isolated Local Minima [0.0]
Non-isolated minima presents a unique challenge that has remained under-explored.
In this paper, we study the local convergence of the gradient descent method to non-isolated global minima.
arXiv Detail & Related papers (2022-03-21T13:33:37Z) - Optimal Estimation and Computational Limit of Low-rank Gaussian Mixtures [12.868722327487752]
We propose a low-rank Gaussian mixture model (LrMM) assuming each matrix-valued observation has a planted low-rank structure.
We prove the minimax optimality of a maximum likelihood estimator which, in general, is computationally infeasible.
Our results reveal multiple phase transitions in the minimax error rates and the statistical-to-computational gap.
arXiv Detail & Related papers (2022-01-22T12:43:25Z) - Minimax Off-Policy Evaluation for Multi-Armed Bandits [58.7013651350436]
We study the problem of off-policy evaluation in the multi-armed bandit model with bounded rewards.
We develop minimax rate-optimal procedures under three settings.
arXiv Detail & Related papers (2021-01-19T18:55:29Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
We consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm.
We provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability.
arXiv Detail & Related papers (2020-08-20T03:48:14Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
We propose a novel technique for analyzing adaptive sampling called the em Simulator.
We prove the first instance-based lower bounds the top-k problem which incorporate the appropriate log-factors.
Our new analysis inspires a simple and near-optimal for the best-arm and top-k identification, the first em practical of its kind for the latter problem.
arXiv Detail & Related papers (2017-02-16T23:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.