A sparse PAC-Bayesian approach for high-dimensional quantile prediction
- URL: http://arxiv.org/abs/2409.01687v1
- Date: Tue, 3 Sep 2024 08:01:01 GMT
- Title: A sparse PAC-Bayesian approach for high-dimensional quantile prediction
- Authors: The Tien Mai,
- Abstract summary: This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantile regression, a robust method for estimating conditional quantiles, has advanced significantly in fields such as econometrics, statistics, and machine learning. In high-dimensional settings, where the number of covariates exceeds sample size, penalized methods like lasso have been developed to address sparsity challenges. Bayesian methods, initially connected to quantile regression via the asymmetric Laplace likelihood, have also evolved, though issues with posterior variance have led to new approaches, including pseudo/score likelihoods. This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction. It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation. The method demonstrates strong theoretical guarantees, through PAC-Bayes bounds, that establish non-asymptotic oracle inequalities, showing minimax-optimal prediction error and adaptability to unknown sparsity. Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
Related papers
- High-dimensional prediction for count response via sparse exponential weights [0.0]
This paper introduces a novel probabilistic machine learning framework for high-dimensional count data prediction.
A key contribution is a novel risk measure tailored to count data prediction, with theoretical guarantees for prediction risk using PAC-Bayesian bounds.
Our results include non-asymptotic oracle inequalities, demonstrating rate-optimal prediction error without prior knowledge of sparsity.
arXiv Detail & Related papers (2024-10-20T12:45:42Z) - Uncertainty estimation in satellite precipitation spatial prediction by combining distributional regression algorithms [3.8623569699070353]
We introduce the concept of distributional regression for the engineering task of creating precipitation datasets through data merging.
We propose new ensemble learning methods that can be valuable not only for spatial prediction but also for prediction problems in general.
arXiv Detail & Related papers (2024-06-29T05:58:00Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
We propose Quantile Sub-Ensembles, a novel method to estimate uncertainty with ensemble of quantile-regression-based task networks.
Our method not only produces accurate imputations that is robust to high missing rates, but also is computationally efficient due to the fast training of its non-generative model.
arXiv Detail & Related papers (2023-12-03T05:52:30Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Robust leave-one-out cross-validation for high-dimensional Bayesian
models [0.0]
Leave-one-out cross-validation (LOO-CV) is a popular method for estimating out-of-sample predictive accuracy.
Here we propose and analyze a novel mixture estimator to compute LOO-CV criteria.
Our method retains the simplicity and computational convenience of classical approaches, while guaranteeing finite variance of the resulting estimators.
arXiv Detail & Related papers (2022-09-19T17:14:52Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Expectation propagation on the diluted Bayesian classifier [0.0]
We introduce a statistical mechanics inspired strategy that addresses the problem of sparse feature selection in the context of binary classification.
A computational scheme known as expectation propagation (EP) is used to train a continuous-weights perceptron learning a classification rule.
EP is a robust and competitive algorithm in terms of variable selection properties, estimation accuracy and computational complexity.
arXiv Detail & Related papers (2020-09-20T23:59:44Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
We propose a new training scheme for auto-regressive sequence generative models, which is effective and stable when operating at large sample space encountered in text generation.
Our method stably outperforms Maximum Likelihood Estimation and other state-of-the-art sequence generative models in terms of both quality and diversity.
arXiv Detail & Related papers (2020-07-12T15:31:24Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.