論文の概要: Encoder vs Decoder: Comparative Analysis of Encoder and Decoder Language Models on Multilingual NLU Tasks
- arxiv url: http://arxiv.org/abs/2406.13469v1
- Date: Wed, 19 Jun 2024 11:50:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 19:53:21.100331
- Title: Encoder vs Decoder: Comparative Analysis of Encoder and Decoder Language Models on Multilingual NLU Tasks
- Title(参考訳): エンコーダ対デコーダ:多言語NLUタスクにおけるエンコーダとデコーダ言語モデルの比較分析
- Authors: Dan Saattrup Nielsen, Kenneth Enevoldsen, Peter Schneider-Kamp,
- Abstract要約: NLUタスク上でデコーダモデルを評価する手法を導入し,デンマーク語,スウェーデン語,ノルウェー語,アイスランド語,フェロー語,ドイツ語,オランダ語,英語の言語に適用する。
この結果から,デコーダモデルでは,異なるタスクや言語間でニュアンスを観測することで,エンコーダモデルよりもはるかに優れたNLU性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 4.851704512420683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the performance of encoder and decoder language models on multilingual Natural Language Understanding (NLU) tasks, with a broad focus on Germanic languages. Building upon the ScandEval benchmark, which initially was restricted to evaluating encoder models, we extend the evaluation framework to include decoder models. We introduce a method for evaluating decoder models on NLU tasks and apply it to the languages Danish, Swedish, Norwegian, Icelandic, Faroese, German, Dutch, and English. Through a series of experiments and analyses, we address key research questions regarding the comparative performance of encoder and decoder models, the impact of NLU task types, and the variation across language resources. Our findings reveal that decoder models can achieve significantly better NLU performance than encoder models, with nuances observed across different tasks and languages. Additionally, we investigate the correlation between decoders and task performance via a UMAP analysis, shedding light on the unique capabilities of decoder and encoder models. This study contributes to a deeper understanding of language model paradigms in NLU tasks and provides valuable insights for model selection and evaluation in multilingual settings.
- Abstract(参考訳): 本稿では,多言語自然言語理解(NLU)タスクにおけるエンコーダとデコーダ言語モデルの性能について考察する。
当初エンコーダモデルの評価に制限されていたScandEvalベンチマークに基づいて、評価フレームワークを拡張してデコーダモデルを含める。
NLUタスク上でデコーダモデルを評価する手法を導入し,デンマーク語,スウェーデン語,ノルウェー語,アイスランド語,フェロー語,ドイツ語,オランダ語,英語の言語に適用する。
実験と分析を通じて,エンコーダとデコーダモデルの比較性能,NLUタスクタイプの影響,言語リソース間の差異など,重要な研究課題に対処する。
この結果から,デコーダモデルでは,異なるタスクや言語間でニュアンスを観測することで,エンコーダモデルよりもはるかに優れたNLU性能が得られることがわかった。
さらに,デコーダとタスク性能の相関性について,UMAP解析を用いて検討し,デコーダとエンコーダモデルのユニークな機能に光を当てる。
本研究は,NLUタスクにおける言語モデルパラダイムのより深い理解に寄与し,多言語環境におけるモデル選択と評価に有用な知見を提供する。
関連論文リスト
- Machine Translation with Large Language Models: Decoder Only vs. Encoder-Decoder [0.0]
このプロジェクトはインドの地域言語、特にテルグ語、タミル語、マラヤラムに重点を置いている。
このモデルは、様々な言語対にわたる正確かつ文脈的に適切な翻訳を可能にすることを目指している。
論文 参考訳(メタデータ) (2024-09-12T00:21:05Z) - Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
大規模言語モデル (LLM) は、様々なドメインにまたがる例外的な推論能力、一般化可能性、およびレイテンシで知られている。
我々は,LLMが直接符号化された音声表現を消費し,テキスト翻訳を生成することができるデコーダのみのアーキテクチャを提案する。
本モデルでは,プロプライエタリなデータを必要としないモデル間で,CoVoST 2およびFLEURSの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-03T14:42:49Z) - A Case Study on Context-Aware Neural Machine Translation with Multi-Task Learning [49.62044186504516]
文書レベルのニューラルネットワーク翻訳(DocNMT)では、コンテクストやソース文のエンコーディングにおいてマルチエンコーダアプローチが一般的である。
近年の研究では、コンテキストエンコーダがノイズを発生させ、コンテキストの選択に頑健なモデルを実現することが示されている。
本稿では、マルチタスク学習(MTL)を通してコンテキストエンコーディングを明示的にモデル化することで、コンテキスト選択に敏感なモデルを実現することにより、この観察をさらに検討する。
論文 参考訳(メタデータ) (2024-07-03T12:50:49Z) - Speculative Contrastive Decoding [55.378200871224074]
大規模言語モデル(LLM)は、言語タスクにおいて例外的な性能を示すが、その自動回帰推論は高い計算要求のために制限され、露出バイアスにより準最適である。
投機的復号法とコントラスト的復号法に着想を得て, 単純かつ強力な復号法である投機的コントラスト的復号法(SCD)を導入する。
論文 参考訳(メタデータ) (2023-11-15T14:15:30Z) - Exploring Automatic Evaluation Methods based on a Decoder-based LLM for
Text Generation [16.78350863261211]
本稿では,エンコーダモデルを用いたチューニングや,同じ条件下での大規模言語モデルなど,様々な手法を比較する。
実験結果から, 調律エンコーダモデルと比較すると, 調律デコーダモデルの性能は低かった。
また、ChatGPTのような非常に大きなデコーダベースのモデルのコンテキスト内学習は、きめ細かいセマンティックな違いを識別することが困難であることも明らかにした。
論文 参考訳(メタデータ) (2023-10-17T06:53:00Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
seq2seqタスクは、与えられた入力ソースシーケンスに基づいてターゲットシーケンスを生成することを目的としている。
伝統的に、seq2seqタスクのほとんどはエンコーダによって解決され、ソースシーケンスとデコーダをエンコードしてターゲットテキストを生成する。
最近、デコーダのみの言語モデルをseq2seqタスクに直接適用する、多くの新しいアプローチが出現しました。
論文 参考訳(メタデータ) (2023-04-08T15:44:29Z) - DeltaLM: Encoder-Decoder Pre-training for Language Generation and
Translation by Augmenting Pretrained Multilingual Encoders [92.90543340071007]
本稿では,事前訓練された多言語エンコーダデコーダモデルDeltaLMを紹介する。
具体的には,事前学習した多言語エンコーダをデコーダで拡張し,自己指導型で事前学習する。
実験により、DeltaLMは自然言語生成と翻訳の両方のタスクにおいて、様々な強力なベースラインを上回ります。
論文 参考訳(メタデータ) (2021-06-25T16:12:10Z) - Improving Zero-shot Neural Machine Translation on Language-specific
Encoders-Decoders [19.44855809470709]
近年,共有エンコーダデコーダを用いたユニバーサルニューラルネットワーク翻訳(NMT)は,ゼロショット翻訳において良好な性能を示した。
ユニバーサルNMTとは異なり、共同で訓練された言語固有のエンコーダ・デコーダは、非共有モジュール間で普遍的な表現を目指す。
言語固有エンコーダ・デコーダを用いたゼロショット翻訳について検討する。
論文 参考訳(メタデータ) (2021-02-12T15:36:33Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
本稿では,ニューラルマシン翻訳タスクのためのBi-Decoder Augmented Network (BiDAN)を提案する。
各デコーダは入力されたテキストの表現を対応する言語に変換するため、2つの目的語と共同でトレーニングすることで、共有エンコーダは言語に依存しない意味空間を生成することができる。
論文 参考訳(メタデータ) (2020-01-14T02:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。