論文の概要: DF40: Toward Next-Generation Deepfake Detection
- arxiv url: http://arxiv.org/abs/2406.13495v2
- Date: Thu, 31 Oct 2024 09:11:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:30.433862
- Title: DF40: Toward Next-Generation Deepfake Detection
- Title(参考訳): DF40:次世代ディープフェイク検出に向けて
- Authors: Zhiyuan Yan, Taiping Yao, Shen Chen, Yandan Zhao, Xinghe Fu, Junwei Zhu, Donghao Luo, Chengjie Wang, Shouhong Ding, Yunsheng Wu, Li Yuan,
- Abstract要約: 既存の研究は、ある特定のデータセットで検出器をトレーニングし、他の一般的なディープフェイクデータセットでテストすることで、トップノーチ検出アルゴリズムとモデルを識別する。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
我々は,40の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
- 参考スコア(独自算出の注目度): 62.073997142001424
- License:
- Abstract: We propose a new comprehensive benchmark to revolutionize the current deepfake detection field to the next generation. Predominantly, existing works identify top-notch detection algorithms and models by adhering to the common practice: training detectors on one specific dataset (e.g., FF++) and testing them on other prevalent deepfake datasets. This protocol is often regarded as a "golden compass" for navigating SoTA detectors. But can these stand-out "winners" be truly applied to tackle the myriad of realistic and diverse deepfakes lurking in the real world? If not, what underlying factors contribute to this gap? In this work, we found the dataset (both train and test) can be the "primary culprit" due to: (1) forgery diversity: Deepfake techniques are commonly referred to as both face forgery and entire image synthesis. Most existing datasets only contain partial types of them, with limited forgery methods implemented; (2) forgery realism: The dominated training dataset, FF++, contains out-of-date forgery techniques from the past four years. "Honing skills" on these forgeries makes it difficult to guarantee effective detection generalization toward nowadays' SoTA deepfakes; (3) evaluation protocol: Most detection works perform evaluations on one type, which hinders the development of universal deepfake detectors. To address this dilemma, we construct a highly diverse deepfake detection dataset called DF40, which comprises 40 distinct deepfake techniques. We then conduct comprehensive evaluations using 4 standard evaluation protocols and 8 representative detection methods, resulting in over 2,000 evaluations. Through these evaluations, we provide an extensive analysis from various perspectives, leading to 7 new insightful findings. We also open up 4 valuable yet previously underexplored research questions to inspire future works. Our project page is https://github.com/YZY-stack/DF40.
- Abstract(参考訳): 我々は,現在のディープフェイク検出分野を次世代に革命させるため,新しい総合ベンチマークを提案する。
既存の研究は、ある特定のデータセット(例えば、FF++)上の検出器をトレーニングし、他の一般的なディープフェイクデータセットでそれらをテストすることで、トップノッチ検出アルゴリズムとモデルを識別する。
このプロトコルは、しばしばSoTA検出器をナビゲートするための「金のコンパス」と見なされる。
しかし、これらの「勝者」は現実の世界に潜む無数の現実的で多様なディープフェイクに取り組むために真に応用できるのだろうか?
もしそうでなければ、このギャップにどんな要因が寄与するのか?
本研究では,(1)偽造多様性:ディープフェイク技術は顔偽造と全画像合成の両方で一般的に呼ばれる。
既存のほとんどのデータセットは、一部の型のみを含み、限定されたフォージェリメソッドを実装している。 (2) フォージェリリアリズム: 支配的なトレーニングデータセットであるFF++には、過去4年間の最新のフォージェリテクニックが含まれている。
これらの偽造品の「ホットスキル」は、現在のSoTAディープフェイクに対する効果的な検出一般化の保証を困難にしている。(3)評価プロトコル:ほとんどの検出作業は、1つのタイプで評価を行い、ユニバーサルディープフェイク検出器の開発を妨げている。
このジレンマに対処するために,40個の異なるディープフェイク技術からなるDF40という,高度に多様なディープフェイク検出データセットを構築した。
次に,4つの標準評価プロトコルと8つの代表検出手法を用いて総合評価を行い,2000以上の評価結果を得た。
これらの評価を通じて、様々な視点から広範囲に分析を行い、7つの新たな知見を得た。
また、これまで未調査だった4つの研究質問を公開して、今後の研究に刺激を与えています。
私たちのプロジェクトページはhttps://github.com/YZY-stack/DF40です。
関連論文リスト
- How Generalizable are Deepfake Image Detectors? An Empirical Study [4.42204674141385]
本研究は,ディープフェイク検出器の一般化性に関する最初の実証的研究である。
本研究では,6つのディープフェイクデータセット,5つのディープフェイク画像検出手法,および2つのモデル拡張アプローチを用いた。
検出器は, 合成法に特有の不要な特性を学習し, 識別的特徴の抽出に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-08-08T10:30:34Z) - DeepfakeBench: A Comprehensive Benchmark of Deepfake Detection [55.70982767084996]
ディープフェイク検出の分野で見落とされがちな課題は、標準化され、統一され、包括的なベンチマークがないことである。
DeepfakeBenchと呼ばれる,3つの重要なコントリビューションを提供するディープフェイク検出のための,最初の包括的なベンチマークを提示する。
DeepfakeBenchには15の最先端検出方法、9CLデータセット、一連のDeepfake検出評価プロトコルと分析ツール、包括的な評価ツールが含まれている。
論文 参考訳(メタデータ) (2023-07-04T01:34:41Z) - Improving Fairness in Deepfake Detection [38.999205139257164]
ディープフェイク検出器の訓練に使用されるデータのバイアスは、異なる人種や性別で検出精度が異なることにつながる。
本稿では、人口統計情報の入手可能な設定と、この情報が欠落している場合の両方を扱う新しい損失関数を提案する。
論文 参考訳(メタデータ) (2023-06-29T02:19:49Z) - Learning Pairwise Interaction for Generalizable DeepFake Detection [20.723277551489186]
DeepFake生成技術の開発は、既知のタイプのDeepFake向けに設計された検出スキームに挑戦している。
我々は,異なる色空間表現からペアワイズ学習と補完情報を利用する,MCX-API(Multi-Channel Xception Attention Pairwise Interaction)を提案する。
実験の結果,提案手法は最先端のDeepfakes検出器よりも一般化可能であることがわかった。
論文 参考訳(メタデータ) (2023-02-26T10:39:08Z) - A Continual Deepfake Detection Benchmark: Dataset, Methods, and
Essentials [97.69553832500547]
本稿では, 既知の生成モデルと未知の生成モデルの両方から, 新たなディープフェイク集合に対する連続的なディープフェイク検出ベンチマーク(CDDB)を提案する。
本研究では,連続的なディープラーニング検出問題に対して,連続的な視覚認識で一般的に使用される多クラス漸進学習手法を適応するために,複数のアプローチを利用する。
論文 参考訳(メタデータ) (2022-05-11T13:07:19Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
ディープフェイクは重要な社会問題となり、それらを検出することが非常に重要です。
本研究では,異なる種類のディープフェイクを同時に検出する実用的なデジタル鑑識ツールを提案する。
レジデンシャルブロックを用いた自動エンコーダベースの検出モデルを開発し、異なる種類のディープフェイクを同時に検出する転送学習を順次実施します。
論文 参考訳(メタデータ) (2021-05-13T07:31:08Z) - Multi-attentional Deepfake Detection [79.80308897734491]
ディープフェイクによる顔の偽造はインターネットに広まり、深刻な社会的懸念を引き起こしている。
新たなマルチアテンテーショナルディープフェイク検出ネットワークを提案する。
具体的には,1)ネットワークを異なる局所的部分へ配置するための複数の空間的注意ヘッド,2)浅い特徴の微妙なアーティファクトをズームするテクスチャ的特徴拡張ブロック,3)低レベルなテクスチャ特徴と高レベルなセマンティクス特徴をアグリゲートする,の3つの構成要素からなる。
論文 参考訳(メタデータ) (2021-03-03T13:56:14Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。