One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes
- URL: http://arxiv.org/abs/2406.13544v2
- Date: Wed, 3 Jul 2024 02:53:47 GMT
- Title: One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes
- Authors: Yuchang Zhu, Jintang Li, Yatao Bian, Zibin Zheng, Liang Chen,
- Abstract summary: We propose a graph fairness framework based on invariant learning, namely FairINV.
FairINV incorporates sensitive attribute partition and trains fair GNNs by eliminating spurious correlations between the label and various sensitive attributes.
Experimental results on several real-world datasets demonstrate that FairINV significantly outperforms state-of-the-art fairness approaches.
- Score: 40.57757706386367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have highlighted fairness issues in Graph Neural Networks (GNNs), where they produce discriminatory predictions against specific protected groups categorized by sensitive attributes such as race and age. While various efforts to enhance GNN fairness have made significant progress, these approaches are often tailored to specific sensitive attributes. Consequently, they necessitate retraining the model from scratch to accommodate changes in the sensitive attribute requirement, resulting in high computational costs. To gain deeper insights into this issue, we approach the graph fairness problem from a causal modeling perspective, where we identify the confounding effect induced by the sensitive attribute as the underlying reason. Motivated by this observation, we formulate the fairness problem in graphs from an invariant learning perspective, which aims to learn invariant representations across environments. Accordingly, we propose a graph fairness framework based on invariant learning, namely FairINV, which enables the training of fair GNNs to accommodate various sensitive attributes within a single training session. Specifically, FairINV incorporates sensitive attribute partition and trains fair GNNs by eliminating spurious correlations between the label and various sensitive attributes. Experimental results on several real-world datasets demonstrate that FairINV significantly outperforms state-of-the-art fairness approaches, underscoring its effectiveness. Our code is available via: https://github.com/ZzoomD/FairINV/.
Related papers
- What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Fair Graph Neural Network with Supervised Contrastive Regularization [12.666235467177131]
We propose a novel model for training fairness-aware Graph Neural Networks (GNNs)
Our approach integrates Supervised Contrastive Loss and Environmental Loss to enhance both accuracy and fairness.
arXiv Detail & Related papers (2024-04-09T07:49:05Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
We propose an innovative approach called High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning (HDAFL)
HDAFL utilizes multiple convolutional kernels to automatically learn discriminative regions highly correlated with attributes in images.
We also introduce a Transformer-based attribute discrimination encoder to enhance the discriminative capability among attributes.
arXiv Detail & Related papers (2024-04-07T13:17:47Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
arXiv Detail & Related papers (2024-03-15T18:37:15Z) - MAPPING: Debiasing Graph Neural Networks for Fair Node Classification
with Limited Sensitive Information Leakage [1.8238848494579714]
We propose a novel model-agnostic debiasing framework named MAPPING for fair node classification.
Our results show that MAPPING can achieve better trade-offs between utility and fairness, and privacy risks of sensitive information leakage.
arXiv Detail & Related papers (2024-01-23T14:59:46Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain.
Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks)
This paper proposes a method to mitigate these correlations to improve fairness.
arXiv Detail & Related papers (2023-11-02T19:51:10Z) - Fairness-Aware Graph Neural Networks: A Survey [53.41838868516936]
Graph Neural Networks (GNNs) have become increasingly important due to their representational power and state-of-the-art predictive performance.
GNNs suffer from fairness issues that arise as a result of the underlying graph data and the fundamental aggregation mechanism.
In this article, we examine and categorize fairness techniques for improving the fairness of GNNs.
arXiv Detail & Related papers (2023-07-08T08:09:06Z) - Improving Fairness in Graph Neural Networks via Mitigating Sensitive
Attribute Leakage [35.810534649478576]
Graph Neural Networks (GNNs) have shown great power in learning node representations on graphs.
GNNs may inherit historical prejudices from training data, leading to discriminatory bias in predictions.
We propose Fair View Graph Neural Network (FairVGNN) to generate fair views of features by automatically identifying and masking sensitive-correlated features.
arXiv Detail & Related papers (2022-06-07T16:25:20Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
We propose graph counterfactual fairness, which considers the biases led by the above facts.
We generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes.
Our framework outperforms the state-of-the-art baselines in graph counterfactual fairness.
arXiv Detail & Related papers (2022-01-10T21:43:44Z) - You Can Still Achieve Fairness Without Sensitive Attributes: Exploring
Biases in Non-Sensitive Features [29.94644351343916]
We propose a novel framework which simultaneously uses these related features for accurate prediction and regularizing the model to be fair.
Experimental results on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2021-04-29T17:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.