Mining United Nations General Assembly Debates
- URL: http://arxiv.org/abs/2406.13553v1
- Date: Wed, 19 Jun 2024 13:43:27 GMT
- Title: Mining United Nations General Assembly Debates
- Authors: Mateusz Grzyb, Mateusz Krzyziński, Bartłomiej Sobieski, Mikołaj Spytek, Bartosz Pieliński, Daniel Dan, Anna Wróblewska,
- Abstract summary: This project explores the application of Natural Language Processing (NLP) techniques to analyse United Nations General Assembly (UNGA) speeches.
Using NLP allows for the efficient processing and analysis of large volumes of textual data, enabling the extraction of semantic patterns, sentiment analysis, and topic modelling.
- Score: 0.05653954660295179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project explores the application of Natural Language Processing (NLP) techniques to analyse United Nations General Assembly (UNGA) speeches. Using NLP allows for the efficient processing and analysis of large volumes of textual data, enabling the extraction of semantic patterns, sentiment analysis, and topic modelling. Our goal is to deliver a comprehensive dataset and a tool (interface with descriptive statistics and automatically extracted topics) from which political scientists can derive insights into international relations and have the opportunity to have a nuanced understanding of global diplomatic discourse.
Related papers
- Combining Objective and Subjective Perspectives for Political News Understanding [5.741243797283764]
We introduce a text analysis framework which integrates both perspectives and provides a fine-grained processing of subjective aspects.
We illustrate its functioning with insights on news outlets, political orientations, topics, individual entities, and demographic segments.
arXiv Detail & Related papers (2024-08-20T20:13:19Z) - Automating the Information Extraction from Semi-Structured Interview
Transcripts [0.0]
This paper explores the development and application of an automated system designed to extract information from semi-structured interview transcripts.
We present a user-friendly software prototype that enables researchers to efficiently process and visualize the thematic structure of interview data.
arXiv Detail & Related papers (2024-03-07T13:53:03Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Ling-CL: Understanding NLP Models through Linguistic Curricula [17.44112549879293]
We employ a characterization of linguistic complexity from psycholinguistic and language acquisition research.
We develop data-driven curricula to understand the underlying linguistic knowledge that models learn to address NLP tasks.
arXiv Detail & Related papers (2023-10-31T01:44:33Z) - Key-phrase boosted unsupervised summary generation for FinTech
organization [4.583461218488076]
Some of the NLP applications such as intent detection, sentiment classification, text summarization can help FinTech organizations to utilize the social media language data.
We design an unsupervised phrase-based summary generation from social media data, using 'Action-Object' pairs (intent phrases)
We evaluate the proposed method with other key-phrase based summary generation methods in the direction of contextual information of various Reddit discussion threads.
arXiv Detail & Related papers (2023-10-16T11:30:47Z) - Improving Mandarin Prosodic Structure Prediction with Multi-level
Contextual Information [68.89000132126536]
This work proposes to use inter-utterance linguistic information to improve the performance of prosodic structure prediction (PSP)
Our method achieves better F1 scores in predicting prosodic word (PW), prosodic phrase (PPH) and intonational phrase (IPH)
arXiv Detail & Related papers (2023-08-31T09:19:15Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - An Inclusive Notion of Text [69.36678873492373]
We argue that clarity on the notion of text is crucial for reproducible and generalizable NLP.
We introduce a two-tier taxonomy of linguistic and non-linguistic elements that are available in textual sources and can be used in NLP modeling.
arXiv Detail & Related papers (2022-11-10T14:26:43Z) - Systematic Inequalities in Language Technology Performance across the
World's Languages [94.65681336393425]
We introduce a framework for estimating the global utility of language technologies.
Our analyses involve the field at large, but also more in-depth studies on both user-facing technologies and more linguistic NLP tasks.
arXiv Detail & Related papers (2021-10-13T14:03:07Z) - Ensuring the Inclusive Use of Natural Language Processing in the Global
Response to COVID-19 [58.720142291102135]
We discuss ways in which current and future NLP approaches can be made more inclusive by covering low-resource languages.
We suggest several future directions for researchers interested in maximizing the positive societal impacts of NLP.
arXiv Detail & Related papers (2021-08-11T12:54:26Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
The architecture integrates existing NLP components to produce candidate analyses on eight levels of linguistic modeling.
The architecture builds on Universal Dependencies (UD) as its representation formalism on the form level and on Abstract Meaning Representations (AMRs) to represent semantic analyses of learner answers.
arXiv Detail & Related papers (2020-04-15T11:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.