Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach
- URL: http://arxiv.org/abs/2406.13558v2
- Date: Sat, 22 Jun 2024 14:44:34 GMT
- Title: Enhancing Travel Choice Modeling with Large Language Models: A Prompt-Learning Approach
- Authors: Xuehao Zhai, Hanlin Tian, Lintong Li, Tianyu Zhao,
- Abstract summary: We introduce a novel prompt-learning-based Large Language Model(LLM) framework that significantly improves prediction accuracy and provides explicit explanations for individual predictions.
We tested the framework's efficacy using two widely used choice datasets: London Passenger Mode Choice (LPMC) and Optima-Mode collected in Switzerland.
The results indicate that the LLM significantly outperforms state-of-the-art deep learning methods and discrete choice models in predicting people's choices.
- Score: 6.913791588789051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Travel choice analysis is crucial for understanding individual travel behavior to develop appropriate transport policies and recommendation systems in Intelligent Transportation Systems (ITS). Despite extensive research, this domain faces two critical challenges: a) modeling with limited survey data, and b) simultaneously achieving high model explainability and accuracy. In this paper, we introduce a novel prompt-learning-based Large Language Model(LLM) framework that significantly improves prediction accuracy and provides explicit explanations for individual predictions. This framework involves three main steps: transforming input variables into textual form; building of demonstrations similar to the object, and applying these to a well-trained LLM. We tested the framework's efficacy using two widely used choice datasets: London Passenger Mode Choice (LPMC) and Optima-Mode collected in Switzerland. The results indicate that the LLM significantly outperforms state-of-the-art deep learning methods and discrete choice models in predicting people's choices. Additionally, we present a case of explanation illustrating how the LLM framework generates understandable and explicit explanations at the individual level.
Related papers
- Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process [45.632012199451275]
In-context learning (ICL) is a few-shot learning paradigm that involves learning mappings through input-output pairs.
Existing works are highly dependent on large-scale labeled support sets, not always feasible in practical scenarios.
We introduce the Language Model-based Determinant Point Process (LM-DPP) that simultaneously considers the uncertainty and diversity of unlabeled instances for optimal selection.
arXiv Detail & Related papers (2024-08-04T18:08:15Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Self-Refine Instruction-Tuning for Aligning Reasoning in Language Models [0.8133739801185272]
The alignments of reasoning abilities between smaller and larger Language Models are largely conducted via Supervised Fine-Tuning (SFT)
We propose the Self-refine Instruction-tuning method that elicits Smaller Language Models to self-refine their abilities.
Results obtained on commonsense and math reasoning tasks show that this approach significantly outperforms Instruction-tuning in both in-domain and out-domain scenarios.
arXiv Detail & Related papers (2024-05-01T09:10:27Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.