Trapezoidal Gradient Descent for Effective Reinforcement Learning in Spiking Networks
- URL: http://arxiv.org/abs/2406.13568v1
- Date: Wed, 19 Jun 2024 13:56:22 GMT
- Title: Trapezoidal Gradient Descent for Effective Reinforcement Learning in Spiking Networks
- Authors: Yuhao Pan, Xiucheng Wang, Nan Cheng, Qi Qiu,
- Abstract summary: Spiking Neural Network (SNN) with their low energy consumption characteristics and performance have garnered widespread attention.
To reduce the energy consumption of practical applications of reinforcement learning, researchers have successively proposed the Pop-SAN and MDC-SAN algorithms.
We propose a trapezoidal approximation gradient method to replace the spike network, which not only preserves the original stable learning state but also enhances the model's adaptability and response sensitivity under various signal dynamics.
- Score: 10.422381897413263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of artificial intelligence technology, the field of reinforcement learning has continuously achieved breakthroughs in both theory and practice. However, traditional reinforcement learning algorithms often entail high energy consumption during interactions with the environment. Spiking Neural Network (SNN), with their low energy consumption characteristics and performance comparable to deep neural networks, have garnered widespread attention. To reduce the energy consumption of practical applications of reinforcement learning, researchers have successively proposed the Pop-SAN and MDC-SAN algorithms. Nonetheless, these algorithms use rectangular functions to approximate the spike network during the training process, resulting in low sensitivity, thus indicating room for improvement in the training effectiveness of SNN. Based on this, we propose a trapezoidal approximation gradient method to replace the spike network, which not only preserves the original stable learning state but also enhances the model's adaptability and response sensitivity under various signal dynamics. Simulation results show that the improved algorithm, using the trapezoidal approximation gradient to replace the spike network, achieves better convergence speed and performance compared to the original algorithm and demonstrates good training stability.
Related papers
- Applying Incremental Learning in Binary-Addition-Tree Algorithm for Dynamic Binary-State Network Reliability [0.08158530638728499]
The Binary-Addition-Tree algorithm (BAT) is a powerful implicit enumeration method for solving network reliability and optimization problems.
By introducing incremental learning, we enable the BAT to adapt and improve its performance iteratively as it encounters new data or network changes.
arXiv Detail & Related papers (2024-09-24T04:13:03Z) - Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities.
Backpropagation through time (BPTT), the prevailing method, extends the backpropagation algorithm by unrolling the RNN over time.
BPTT suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information.
We present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT.
arXiv Detail & Related papers (2024-05-14T21:15:29Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - Accelerated Training via Incrementally Growing Neural Networks using
Variance Transfer and Learning Rate Adaptation [34.7523496790944]
We develop an approach to efficiently grow neural networks, within which parameterization and optimization strategies are designed by considering the training dynamics.
We show that our method achieves comparable or better accuracy than training large fixed-size models, while saving a substantial portion of the original budget for training.
arXiv Detail & Related papers (2023-06-22T07:06:45Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Dynamics-aware Adversarial Attack of Adaptive Neural Networks [75.50214601278455]
We investigate the dynamics-aware adversarial attack problem of adaptive neural networks.
We propose a Leaded Gradient Method (LGM) and show the significant effects of the lagged gradient.
Our LGM achieves impressive adversarial attack performance compared with the dynamic-unaware attack methods.
arXiv Detail & Related papers (2022-10-15T01:32:08Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - A Supervised Learning Algorithm for Multilayer Spiking Neural Networks
Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design [2.6872737601772956]
Spiking neural networks (SNNs) are brain-inspired mathematical models with the ability to process information in the form of spikes.
We propose a novel supervised learning algorithm for SNNs based on temporal coding.
arXiv Detail & Related papers (2020-01-08T03:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.