Ultra-High-Definition Image Restoration: New Benchmarks and A Dual Interaction Prior-Driven Solution
- URL: http://arxiv.org/abs/2406.13607v4
- Date: Wed, 16 Oct 2024 01:11:04 GMT
- Title: Ultra-High-Definition Image Restoration: New Benchmarks and A Dual Interaction Prior-Driven Solution
- Authors: Liyan Wang, Cong Wang, Jinshan Pan, Xiaofeng Liu, Weixiang Zhou, Xiaoran Sun, Wei Wang, Zhixun Su,
- Abstract summary: We construct UHD snow and rain benchmarks, named UHD-Snow and UHD-Rain.
Each benchmark contains 3200 degraded/clear image pairs of 4K resolution.
We propose an effective UHD image restoration solution by considering gradient and normal priors in model design.
- Score: 37.42524995828323
- License:
- Abstract: Ultra-High-Definition (UHD) image restoration has acquired remarkable attention due to its practical demand. In this paper, we construct UHD snow and rain benchmarks, named UHD-Snow and UHD-Rain, to remedy the deficiency in this field. The UHD-Snow/UHD-Rain is established by simulating the physics process of rain/snow into consideration and each benchmark contains 3200 degraded/clear image pairs of 4K resolution. Furthermore, we propose an effective UHD image restoration solution by considering gradient and normal priors in model design thanks to these priors' spatial and detail contributions. Specifically, our method contains two branches: (a) feature fusion and reconstruction branch in high-resolution space and (b) prior feature interaction branch in low-resolution space. The former learns high-resolution features and fuses prior-guided low-resolution features to reconstruct clear images, while the latter utilizes normal and gradient priors to mine useful spatial features and detail features to guide high-resolution recovery better. To better utilize these priors, we introduce single prior feature interaction and dual prior feature interaction, where the former respectively fuses normal and gradient priors with high-resolution features to enhance prior ones, while the latter calculates the similarity between enhanced prior ones and further exploits dual guided filtering to boost the feature interaction of dual priors. We conduct experiments on both new and existing public datasets and demonstrate the state-of-the-art performance of our method on UHD image low-light enhancement, dehazing, deblurring, desonwing, and deraining. The source codes and benchmarks are available at \url{https://github.com/wlydlut/UHDDIP}.
Related papers
- Realistic Extreme Image Rescaling via Generative Latent Space Learning [51.85790402171696]
We propose a novel framework called Latent Space Based Image Rescaling (LSBIR) for extreme image rescaling tasks.
LSBIR effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model to generate realistic HR images.
In the first stage, a pseudo-invertible encoder-decoder models the bidirectional mapping between the latent features of the HR image and the target-sized LR image.
In the second stage, the reconstructed features from the first stage are refined by a pre-trained diffusion model to generate more faithful and visually pleasing details.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Towards Ultra-High-Definition Image Deraining: A Benchmark and An Efficient Method [42.331058889312466]
This paper contributes the first large-scale UHD image deraining dataset, 4K-Rain13k, that contains 13,000 image pairs at 4K resolution.
We develop an effective and efficient vision-based architecture (UDR-Mixer) to better solve this task.
arXiv Detail & Related papers (2024-05-27T11:45:08Z) - Embedding Fourier for Ultra-High-Definition Low-Light Image Enhancement [78.67036949708795]
Ultra-High-Definition (UHD) photo has gradually become the standard configuration in advanced imaging devices.
We propose a new solution, UHDFour, that embeds Fourier transform into a cascaded network.
We also contribute the first real UHD LLIE dataset, textbfUHD-LL, that contains 2,150 low-noise/normal-clear 4K image pairs.
arXiv Detail & Related papers (2023-02-23T07:43:41Z) - SVBRDF Recovery From a Single Image With Highlights using a Pretrained
Generative Adversarial Network [25.14140648820334]
In this paper, we use an unsupervised generative adversarial neural network (GAN) to recover SVBRDFs maps with a single image as input.
For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fine-tune it based on the input image.
Our method generates high-quality SVBRDFs maps from a single input photograph, and provides more vivid rendering results compared to previous work.
arXiv Detail & Related papers (2021-10-29T10:39:06Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Progressive and Selective Fusion Network for High Dynamic Range Imaging [28.639647755164916]
This paper considers the problem of generating an HDR image of a scene from its LDR images.
Recent studies employ deep learning and solve the problem in an end-to-end fashion, leading to significant performance improvements.
We propose a novel method that can better fuse the features based on two ideas. One is multi-step feature fusion; our network gradually fuses the features in a stack of blocks having the same structure.
arXiv Detail & Related papers (2021-08-19T09:42:03Z) - UltraSR: Spatial Encoding is a Missing Key for Implicit Image
Function-based Arbitrary-Scale Super-Resolution [74.82282301089994]
In this work, we propose UltraSR, a simple yet effective new network design based on implicit image functions.
We show that spatial encoding is indeed a missing key towards the next-stage high-accuracy implicit image function.
Our UltraSR sets new state-of-the-art performance on the DIV2K benchmark under all super-resolution scales.
arXiv Detail & Related papers (2021-03-23T17:36:42Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
We propose a dual-branch convolutional neural network to extract base features and recovered features separately.
By decomposing the feature extraction step into two task-independent streams, the dual-branch model can facilitate the training process.
arXiv Detail & Related papers (2020-03-02T13:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.