Super-Resolution for Remote Sensing Imagery via the Coupling of a Variational Model and Deep Learning
- URL: http://arxiv.org/abs/2412.09841v1
- Date: Fri, 13 Dec 2024 04:19:48 GMT
- Title: Super-Resolution for Remote Sensing Imagery via the Coupling of a Variational Model and Deep Learning
- Authors: Jing Sun, Huanfeng Shen, Qiangqiang Yuan, Liangpei Zhang,
- Abstract summary: gradient-guided multi-frame super-resolution (MFSR) framework for remote sensing imagery reconstruction.
We propose a novel gradient-guided multi-frame super-resolution (MFSR) framework for remote sensing imagery reconstruction.
- Score: 20.697932997351813
- License:
- Abstract: Image super-resolution (SR) is an effective way to enhance the spatial resolution and detail information of remote sensing images, to obtain a superior visual quality. As SR is severely ill-conditioned, effective image priors are necessary to regularize the solution space and generate the corresponding high-resolution (HR) image. In this paper, we propose a novel gradient-guided multi-frame super-resolution (MFSR) framework for remote sensing imagery reconstruction. The framework integrates a learned gradient prior as the regularization term into a model-based optimization method. Specifically, the local gradient regularization (LGR) prior is derived from the deep residual attention network (DRAN) through gradient profile transformation. The non-local total variation (NLTV) prior is characterized using the spatial structure similarity of the gradient patches with the maximum a posteriori (MAP) model. The modeled prior performs well in preserving edge smoothness and suppressing visual artifacts, while the learned prior is effective in enhancing sharp edges and recovering fine structures. By incorporating the two complementary priors into an adaptive norm based reconstruction framework, the mixed L1 and L2 regularization minimization problem is optimized to achieve the required HR remote sensing image. Extensive experimental results on remote sensing data demonstrate that the proposed method can produce visually pleasant images and is superior to several of the state-of-the-art SR algorithms in terms of the quantitative evaluation.
Related papers
- Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Memory-augmented Deep Unfolding Network for Guided Image
Super-resolution [67.83489239124557]
Guided image super-resolution (GISR) aims to obtain a high-resolution (HR) target image by enhancing the spatial resolution of a low-resolution (LR) target image under the guidance of a HR image.
Previous model-based methods mainly takes the entire image as a whole, and assume the prior distribution between the HR target image and the HR guidance image.
We propose a maximal a posterior (MAP) estimation model for GISR with two types of prior on the HR target image.
arXiv Detail & Related papers (2022-02-12T15:37:13Z) - Gradient Variance Loss for Structure-Enhanced Image Super-Resolution [16.971608518924597]
We introduce a structure-enhancing loss function, coined Gradient Variance (GV) loss, and generate textures with perceptual-pleasant details.
Experimental results show that the GV loss can significantly improve both Structure Similarity (SSIM) and peak signal-to-noise ratio (PSNR) performance of existing image super-resolution (SR) deep learning models.
arXiv Detail & Related papers (2022-02-02T12:31:05Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Deep Amended Gradient Descent for Efficient Spectral Reconstruction from
Single RGB Images [42.26124628784883]
We propose a compact, efficient, and end-to-end learning-based framework, namely AGD-Net.
We first formulate the problem explicitly based on the classic gradient descent algorithm.
AGD-Net can improve the reconstruction quality by more than 1.0 dB on average.
arXiv Detail & Related papers (2021-08-12T05:54:09Z) - Structure-Preserving Super Resolution with Gradient Guidance [87.79271975960764]
Structures matter in single image super resolution (SISR)
Recent studies benefiting from generative adversarial network (GAN) have promoted the development of SISR.
However, there are always undesired structural distortions in the recovered images.
arXiv Detail & Related papers (2020-03-29T17:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.