Entangled Matter-waves for Quantum Enhanced Sensing
- URL: http://arxiv.org/abs/2406.13616v2
- Date: Mon, 12 Aug 2024 22:11:31 GMT
- Title: Entangled Matter-waves for Quantum Enhanced Sensing
- Authors: John Drew Wilson, Jarrod T. Reilly, Haoqing Zhang, Chengyi Luo, Anjun Chu, James K. Thompson, Ana Maria Rey, Murray J. Holland,
- Abstract summary: We present a method for creating and controlling entanglement between solely the motional states of atoms in a cavity without the need for electronic interactions.
This system offers a highly tunable, many-body quantum sensor and simulator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to create and harness entanglement is crucial to the fields of quantum sensing and simulation, and ultracold atom-cavity systems offer pristine platforms for this undertaking. Here, we present a method for creating and controlling entanglement between solely the motional states of atoms in a cavity without the need for electronic interactions. We show this interaction arises from a general atom-cavity model, and discuss the role of the cavity frequency shift in response to atomic motion. This cavity response leads to many different squeezing interactions between the atomic momentum states. Furthermore, we show that when the atoms form a density grating, the collective motion leads to one-axis twisting, a many-body energy gap, and metrologically useful entanglement even in the presence of noise. Noteably, an experiment has recently demonstrated this regime leads to an effective momentum-exchange interaction between atoms in a common cavity mode. This system offers a highly tunable, many-body quantum sensor and simulator.
Related papers
- Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Observation of Feshbach resonances between a single ion and ultracold
atoms [0.0]
Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science.
Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between $138$Ba$+$ ions and $6$Li atoms.
arXiv Detail & Related papers (2021-05-19T20:15:17Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.