論文の概要: Hitchhiker's guide on Energy-Based Models: a comprehensive review on the relation with other generative models, sampling and statistical physics
- arxiv url: http://arxiv.org/abs/2406.13661v1
- Date: Wed, 19 Jun 2024 16:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 19:04:39.340580
- Title: Hitchhiker's guide on Energy-Based Models: a comprehensive review on the relation with other generative models, sampling and statistical physics
- Title(参考訳): エネルギーベースモデルに関するヒッチハイカーのガイド:他の生成モデル、サンプリングおよび統計物理学との関係に関する包括的なレビュー
- Authors: Davide Carbone,
- Abstract要約: エネルギーベースモデル(EBM)は、生成モデリングの領域において強力なフレームワークとして登場した。
このレビューは、物理学者にESMの包括的理解を提供し、他の生成モデルとの関係を説明することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy-Based Models (EBMs) have emerged as a powerful framework in the realm of generative modeling, offering a unique perspective that aligns closely with principles of statistical mechanics. This review aims to provide physicists with a comprehensive understanding of EBMs, delineating their connection to other generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalizing Flows. We explore the sampling techniques crucial for EBMs, including Markov Chain Monte Carlo (MCMC) methods, and draw parallels between EBM concepts and statistical mechanics, highlighting the significance of energy functions and partition functions. Furthermore, we delve into state-of-the-art training methodologies for EBMs, covering recent advancements and their implications for enhanced model performance and efficiency. This review is designed to clarify the often complex interconnections between these models, which can be challenging due to the diverse communities working on the topic.
- Abstract(参考訳): エネルギーベースモデル(EBM)は、生成モデリングの領域において強力なフレームワークとして登場し、統計力学の原理と密接に一致したユニークな視点を提供している。
本総説は, GAN (Generative Adversarial Networks) やVAE (variantal Autoencoders) , 正規化フロー (Normalizing Flows) など, その他の生成モデルとの関係について, EBM の包括的理解を物理学者に提供することを目的としている。
我々は, マルコフ・チェイン・モンテカルロ(MCMC)法を含むESMにとって重要なサンプリング技術について検討し, エネルギー関数と分配関数の重要性を強調した。
さらに,最近の進歩と,モデルの性能向上と効率向上への意義を考察して,ESMの最先端の訓練手法を探求する。
このレビューは、これらのモデル間のしばしば複雑な相互接続を明確にするために設計されている。
関連論文リスト
- STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning
Energy-Based Models [41.031470884141775]
エネルギーベースモデル(EBM)のためのエンドツーエンド学習アルゴリズムを提案する。
本稿では、異方性段差と勾配インフォームド共分散行列に基づく新しい高次元サンプリング法を提案する。
提案手法,すなわちSTANLEYは,新しいMCMC法を用いてエネルギーベースモデルを学習するための最適化アルゴリズムである。
論文 参考訳(メタデータ) (2023-10-19T11:55:16Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
非収束短距離MCMCを用いた事前及び後方サンプリングによる潜時空間EMM学習の一般的な実践は、さらなる進歩を妨げている。
本稿では,MCMCサンプリングのための単純だが効果的な拡散型アモータイズ手法を導入し,それに基づく潜時空間EMMのための新しい学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-05T00:23:34Z) - Revisiting Energy Based Models as Policies: Ranking Noise Contrastive
Estimation and Interpolating Energy Models [18.949193683555237]
本研究では,エネルギーベースモデル (EBM) の選択を政策クラスとして再考する。
我々は,いくつかの重要な要素を組み合わせたエネルギーモデルのための学習目標とアルゴリズムを開発する。
Inlicit Behavior Cloning (IBC) の目的が実際に人口レベルでも偏っていることを示す。
論文 参考訳(メタデータ) (2023-09-11T20:13:47Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
高次元データに基づくエネルギーベースモデル(EBM)の訓練は、困難かつ時間を要する可能性がある。
EBMと、GANや拡散モデルのような他の生成フレームワークとの間には、サンプル品質に顕著なギャップがある。
本研究では,協調拡散回復可能性 (CDRL) を提案する。
論文 参考訳(メタデータ) (2023-09-10T22:05:24Z) - On Feature Diversity in Energy-based Models [98.78384185493624]
エネルギーベースモデル(EBM)は通常、異なる特徴の組み合わせを学習し、入力構成ごとにエネルギーマッピングを生成する内部モデルによって構成される。
EBMのほぼ正しい(PAC)理論を拡張し,EBMの性能に及ぼす冗長性低減の影響を解析した。
論文 参考訳(メタデータ) (2023-06-02T12:30:42Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
本稿では,拡散モデルと潜時空間ESMの共生を変動学習フレームワークで導入する。
我々は,学習した潜在空間の品質を向上させるために,情報ボトルネックと合わせて幾何学的クラスタリングに基づく正規化を開発する。
論文 参考訳(メタデータ) (2022-06-13T03:41:31Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
エネルギーベースモデリングは教師なし学習への有望なアプローチであり、単一のモデルから多くの下流アプリケーションを生み出す。
コントラスト的アプローチ(contrastive approach)"でエネルギーベースモデルを学習する際の主な困難は、各イテレーションで現在のエネルギー関数からサンプルを生成することである。
本稿では,これらのサンプルを取得し,現行モデルからの粗大なMCMCサンプリングを回避するための代替手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T23:41:07Z) - How to Train Your Energy-Based Models [19.65375049263317]
エネルギーベースモデル(EBM)は、未知の正規化定数まで確率密度や質量関数を指定する。
本チュートリアルは,ESMの適用や研究プロジェクト開始を希望する生成モデルの基本的理解者を対象としている。
論文 参考訳(メタデータ) (2021-01-09T04:51:31Z) - Learning Energy-Based Model with Variational Auto-Encoder as Amortized
Sampler [35.80109055748496]
最大確率でエネルギーベースモデル(ebms)を訓練するにはマルコフ連鎖モンテカルロサンプリングが必要である。
我々は、エネルギー関数から派生したランゲビンダイナミクスのような有限ステップMCMCを初期化する変分オートエンコーダ(VAE)を学びます。
これらのアモールト化MCMCサンプルにより、ESMは「合成による分析」スキームに従って最大で訓練することができる。
我々はこの共同学習アルゴリズムを変分MCMC教育と呼び、VAEはEMMをデータ分布に向けて追従する。
論文 参考訳(メタデータ) (2020-12-29T20:46:40Z) - Energy-based View of Retrosynthesis [70.66156081030766]
エネルギーモデルとしてシーケンスおよびグラフベースの手法を統一するフレームワークを提案する。
本稿では,ベイズ前方および後方予測に対して一貫した訓練を行うフレームワーク内での新しい二重変種を提案する。
このモデルは、反応型が不明なテンプレートフリーアプローチに対して、最先端の性能を9.6%向上させる。
論文 参考訳(メタデータ) (2020-07-14T18:51:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。