Multilingual De-Duplication Strategies: Applying scalable similarity search with monolingual & multilingual embedding models
- URL: http://arxiv.org/abs/2406.13695v1
- Date: Wed, 19 Jun 2024 16:48:14 GMT
- Title: Multilingual De-Duplication Strategies: Applying scalable similarity search with monolingual & multilingual embedding models
- Authors: Stefan Pasch, Dimitirios Petridis, Jannic Cutura,
- Abstract summary: This paper addresses the deduplication of multilingual textual data using advanced NLP tools.
We compare a two-step method involving translation to English followed by embedding with mpnet, and a multilingual embedding model (distiluse)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the deduplication of multilingual textual data using advanced NLP tools. We compare a two-step method involving translation to English followed by embedding with mpnet, and a multilingual embedding model (distiluse). The two-step approach achieved a higher F1 score (82% vs. 60%), particularly with less widely used languages, which can be increased up to 89% by leveraging expert rules based on domain knowledge. We also highlight limitations related to token length constraints and computational efficiency. Our methodology suggests improvements for future multilingual deduplication tasks.
Related papers
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings [22.71166607645311]
We introduce a novel suite of state-of-the-art bilingual text embedding models.
These models are capable of processing lengthy text inputs with up to 8192 tokens.
We have significantly improved the model performance on STS tasks.
We have expanded the Massive Text Embedding Benchmark to include benchmarks for German and Spanish embedding models.
arXiv Detail & Related papers (2024-02-26T20:53:12Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - Massively Multilingual ASR on 70 Languages: Tokenization, Architecture,
and Generalization Capabilities [35.15674061731237]
This paper explores large-scale multilingual ASR models on 70 languages.
We show that our multilingual ASR generalizes well on an unseen dataset and domain, achieving 9.5% and 7.5% WER on Multilingual Librispeech (MLS) with zero-shot and finetuning, respectively.
arXiv Detail & Related papers (2022-11-10T18:43:42Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot
Cross-Lingual NLP [68.2650714613869]
We propose a data augmentation framework to generate multi-lingual code-switching data to fine-tune mBERT.
Compared with the existing work, our method does not rely on bilingual sentences for training, and requires only one training process for multiple target languages.
arXiv Detail & Related papers (2020-06-11T13:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.