Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
- URL: http://arxiv.org/abs/2507.13618v3
- Date: Fri, 25 Jul 2025 03:46:56 GMT
- Title: Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
- Authors: Shanbo Cheng, Yu Bao, Qian Cao, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Wenhao Zhu, Jingwen Chen, Zhichao Huang, Tao Li, Yifu Li, Huiying Lin, Sitong Liu, Ningxin Peng, Shuaijie She, Lu Xu, Nuo Xu, Sen Yang, Runsheng Yu, Yiming Yu, Liehao Zou, Hang Li, Lu Lu, Yuxuan Wang, Yonghui Wu,
- Abstract summary: We introduce Seed-X, a family of open-source language models (LLMs) with 7B parameter size.<n>The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages.<n>The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs.
- Score: 53.59868121093848
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.
Related papers
- M-Prometheus: A Suite of Open Multilingual LLM Judges [64.22940792713713]
We introduce M-Prometheus, a suite of open-weight LLM judges that can provide both direct assessment and pairwise comparison feedback on multilingual outputs.<n>M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs.
arXiv Detail & Related papers (2025-04-07T11:37:26Z) - Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study [13.409987421121405]
GemmaX2-28 is a 9B model achieving top-tier multilingual translation performance across 28 languages.<n>GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA.
arXiv Detail & Related papers (2025-02-04T16:57:03Z) - FuxiTranyu: A Multilingual Large Language Model Trained with Balanced Data [39.54285525397304]
We present FuxiTranyu, an open-source multilingual model for large language models (LLMs)
The base model, FuxiTranyu-8B, features 8 billion parameters and is trained from scratch on meticulously balanced multilingual data.
Experiments on a wide range of multilingual benchmarks demonstrate the competitive performance of FuxiTranyu.
arXiv Detail & Related papers (2024-08-12T16:34:56Z) - X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment [4.571088742209442]
We create a 91K English-Korean-Chinese multilingual, multimodal training dataset.
We develop a bilingual multimodal model that exhibits excellent performance in both Korean and English.
arXiv Detail & Related papers (2024-03-18T01:14:47Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
We present PolyLM, a multilingual large language model (LLMs) trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B.
To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training.
Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning.
arXiv Detail & Related papers (2023-07-12T09:00:37Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.