Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference
- URL: http://arxiv.org/abs/2406.13724v1
- Date: Wed, 19 Jun 2024 17:39:10 GMT
- Title: Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference
- Authors: Xuehao Zhai, Junqi Jiang, Adam Dejl, Antonio Rago, Fangce Guo, Francesca Toni, Aruna Sivakumar,
- Abstract summary: We introduce an explainable framework for inferring land use that synergises heterogeneous graph neural networks (HGNs) with Explainable AI techniques.
Experiments demonstrate that the proposed HGNs significantly outperform baseline graph neural networks for all six land-use indicators.
These analyses demonstrate that the proposed HGNs can suitably support urban stakeholders in their urban planning and policy-making.
- Score: 11.753345219488745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban land use inference is a critically important task that aids in city planning and policy-making. Recently, the increased use of sensor and location technologies has facilitated the collection of multi-modal mobility data, offering valuable insights into daily activity patterns. Many studies have adopted advanced data-driven techniques to explore the potential of these multi-modal mobility data in land use inference. However, existing studies often process samples independently, ignoring the spatial correlations among neighbouring objects and heterogeneity among different services. Furthermore, the inherently low interpretability of complex deep learning methods poses a significant barrier in urban planning, where transparency and extrapolability are crucial for making long-term policy decisions. To overcome these challenges, we introduce an explainable framework for inferring land use that synergises heterogeneous graph neural networks (HGNs) with Explainable AI techniques, enhancing both accuracy and explainability. The empirical experiments demonstrate that the proposed HGNs significantly outperform baseline graph neural networks for all six land-use indicators, especially in terms of 'office' and 'sustenance'. As explanations, we consider feature attribution and counterfactual explanations. The analysis of feature attribution explanations shows that the symmetrical nature of the `residence' and 'work' categories predicted by the framework aligns well with the commuter's 'work' and 'recreation' activities in London. The analysis of the counterfactual explanations reveals that variations in node features and types are primarily responsible for the differences observed between the predicted land use distribution and the ideal mixed state. These analyses demonstrate that the proposed HGNs can suitably support urban stakeholders in their urban planning and policy-making.
Related papers
- Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Enhancing Explainability in Mobility Data Science through a combination
of methods [0.08192907805418582]
This paper introduces a comprehensive framework that harmonizes pivotal XAI techniques.
LIMEInterpretable Model-a-gnostic Explanations, SHAP, Saliency maps, attention mechanisms, direct trajectory visualization, and Permutation Feature (PFI)
To validate our framework, we undertook a survey to gauge preferences and reception among various user demographics.
arXiv Detail & Related papers (2023-12-01T07:09:21Z) - Explainable Spatio-Temporal Graph Neural Networks [16.313146933922752]
We propose an Explainable Spatio-Temporal Graph Neural Networks (STGNN) framework that enhances STGNNs with inherent explainability.
Our framework integrates a unified-temporal graph attention network with a positional information fusion layer as the STG encoder and decoder.
We demonstrate that STExplainer outperforms state-of-the-art baselines in terms of predictive accuracy and explainability metrics.
arXiv Detail & Related papers (2023-10-26T04:47:28Z) - Mitigating Urban-Rural Disparities in Contrastive Representation Learning with Satellite Imagery [19.93324644519412]
We consider the risk of urban-rural disparities in identification of land-cover features.
We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of convolution neural network models.
The obtained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images.
arXiv Detail & Related papers (2022-11-16T04:59:46Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
This work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs)
Building upon the analysis, fairness-aware data augmentation frameworks are developed to reduce the intrinsic bias.
Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms.
arXiv Detail & Related papers (2022-01-21T05:49:15Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.