論文の概要: Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED
- arxiv url: http://arxiv.org/abs/2406.13740v2
- Date: Thu, 31 Oct 2024 03:37:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:56:16.717535
- Title: Superfluid Stiffness and Flat-Band Superconductivity in Magic-Angle Graphene Probed by cQED
- Title(参考訳): cQED法により作製したマジックアングルグラフェンの超流動剛性と平板超伝導
- Authors: Miuko Tanaka, Joel Î-j. Wang, Thao H. Dinh, Daniel Rodan-Legrain, Sameia Zaman, Max Hays, Bharath Kannan, Aziza Almanakly, David K. Kim, Bethany M. Niedzielski, Kyle Serniak, Mollie E. Schwartz, Kenji Watanabe, Takashi Taniguchi, Jeffrey A. Grover, Terry P. Orlando, Simon Gustavsson, Pablo Jarillo-Herrero, William D. Oliver,
- Abstract要約: 魔法の角をねじった二層グラフェン(MATBG)の超伝導は、ムーア系の研究に強い関心を持つトピックである。
我々は、MATBGの超流動剛性を直接測定するために、直流輸送およびマイクロ波回路量子力学を用いる。
以上の結果から,MATBGは異方性ギャップを有する常温超伝導体であり,量子幾何学,超流動剛性,非常温超伝導とのつながりが強く示唆された。
- 参考スコア(独自算出の注目度): 0.32018750515900324
- License:
- Abstract: The physics of superconductivity in magic-angle twisted bilayer graphene (MATBG) is a topic of keen interest in moir\'e systems research, and it may provide insight into the pairing mechanism of other strongly correlated materials such as high-$T_{\mathrm{c}}$ superconductors. Here, we use DC-transport and microwave circuit quantum electrodynamics (cQED) to measure directly the superfluid stiffness of superconducting MATBG via its kinetic inductance. We find the superfluid stiffness to be much larger than expected from conventional Fermi liquid theory; rather, it is comparable to theoretical predictions involving quantum geometric effects that are dominant at the magic angle. The temperature dependence of the superfluid stiffness follows a power-law, which contraindicates an isotropic BCS model; instead, the extracted power-law exponents indicate an anisotropic superconducting gap, whether interpreted within the Fermi liquid framework or by considering quantum geometry of flat-band superconductivity. Moreover, a quadratic dependence of the superfluid stiffness on both DC and microwave current is observed, which is consistent with Ginzburg-Landau theory. Taken together, our findings indicate that MATBG is an unconventional superconductor with an anisotropic gap and strongly suggest a connection between quantum geometry, superfluid stiffness, and unconventional superconductivity in MATBG. The combined DC-microwave measurement platform used here is applicable to the investigation of other atomically thin superconductors.
- Abstract(参考訳): マジック角度ツイスト二層グラフェン(MATBG)における超伝導の物理学は、モワール系の研究に強い関心を持ち、高いT_{\mathrm{c}}$超伝導体のような他の強い相関を持つ物質のペアリング機構についての洞察を与えることができる。
ここでは,超伝導MATBGの運動インダクタンスによる超流動剛性を直接測定するために,DC-Transportおよびマイクロ波回路量子力学(cQED)を用いる。
従来のフェルミ液体理論よりはるかに大きい超流動剛性は、魔法の角度で支配的な量子幾何学効果を含む理論的な予測に匹敵するものである。
超流動剛性の温度依存性は、等方性BCSモデルに反し、抽出されたパワーロー指数は、フェルミ液体の枠組み内で解釈されるか、フラットバンド超伝導の量子幾何学を考慮して、異方性超伝導ギャップを示す。
さらに、ギンズバーグ・ランダウ理論と一致する直流電流とマイクロ波電流の超流動剛性の二次的依存性が観察される。
その結果,MATBGは異方性ギャップを有する非定常超伝導体であり,量子幾何学,超流動剛性,およびMATBGの非定常超伝導とのつながりが強く示唆された。
ここで使用される複合直流-マイクロ波測定プラットフォームは、他の原子間超伝導体の研究に適用できる。
関連論文リスト
- Measuring kinetic inductance and superfluid stiffness of two-dimensional superconductors using high-quality transmission-line resonators [1.9343861862849647]
本研究では, 高温超伝導共振器を用いた運動インダクタンス測定手法を提案する。
等価回路モデルを用いて, 複素導電率の運動インダクタンス, 超硬度, 貫入深さ, 虚部および実部の比を抽出する。
本手法は超伝導物理学,材料科学,量子センシングの分野の実践者にとって有用である。
論文 参考訳(メタデータ) (2024-07-13T15:26:00Z) - Superfluid stiffness of twisted multilayer graphene superconductors [1.374933941124824]
マジック角度ツイスト三層グラフェン(TTG)における$rho_s$の測定について報告する。
線形温度依存性は低温での$rho_s$と電流バイアス依存性における非線形マイスナー効果である。
その結果, TTGの能動超伝導の強い証拠が得られ, グラフェン系超伝導体の機構に強い制約が課された。
論文 参考訳(メタデータ) (2024-06-19T18:00:04Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1608869880392607]
時間反転対称性,バンドトポロジ,強い反発相互作用を組み込んだ最小2次元格子モデルを提案する。
本研究は,QSH絶縁体上の孔の弱い対から形成されることを示す。
このことから,本モデルとTBGのキラル限界における構造的類似点と相違点を解明した。
論文 参考訳(メタデータ) (2023-08-21T18:00:01Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
強相関物質の近傍では超伝導と電荷密度波が観測される。
基本$t$-$tprime$-$U$Hubbardモデルの相図で安定化された物質の性質について検討する。
超伝導フラグメントのマクロ波動関数がギンズバーグ・ランダウ方程式のソリトン解によってよく説明されるという決定的な証拠を提供する。
論文 参考訳(メタデータ) (2023-07-21T18:00:07Z) - Topological Superconductivity in Two-Dimensional Altermagnetic Metals [1.779681639954815]
D-wave altermagism と Rashba spin-orbital coupling を持つ2次元金属の超伝導に及ぼす反磁性の影響について検討した。
p波ペアリングが支配的になると、一階と二階の両方を含む多くのトポロジカル超伝導体が出現することを示す。
論文 参考訳(メタデータ) (2023-05-17T18:00:00Z) - Anisotropic superconductivity of niobium based on its response to
non-magnetic disorder [0.0]
ニオブは理論上も実験的にも最も研究されている超伝導体の一つである。
合金のパワー応用に加え、純粋なニオブは感度の強い磁気センシング、高周波キャビティ、最近では超伝導量子ビットの回路金属化層として用いられる。
論文 参考訳(メタデータ) (2022-07-28T22:24:27Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
超伝導共振器に結合した単層グラフェンフレークの熱自己振動を観察した。
実験結果は熱不安定性に基づく理論モデルとよく一致する。
発振側バンドのモデル化は、低エネルギーで不規則なグラフェン試料中の電子フォノンカップリングを評価する方法を提供する。
論文 参考訳(メタデータ) (2022-05-27T15:38:41Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
トンネル2層系(TLS)は超伝導量子ビットなどのマイクロファブリック量子デバイスにおいて重要である。
本稿では,薄膜として堆積した任意の材料に個々のTLSを特徴付ける手法を提案する。
提案手法は, トンネル欠陥の構造を解明するために, 量子材料分光の道を開く。
論文 参考訳(メタデータ) (2020-11-29T09:57:50Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
超低温物質中における空洞を介する長距離磁気相互作用と光学格子の効果について検討した。
競合シナリオを導入しながら,グローバルな相互作用がシステムの根底にある磁気特性を変化させていることが判明した。
これにより、量子情報目的のためのロバストなメカニズムの設計に向けた新しい選択肢が可能になる。
論文 参考訳(メタデータ) (2020-11-16T08:03:44Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
強磁性ジャイロスコープ(英: ferromagnetic gyroscope、FG)は、強磁性体で、角運動量が電子スピンの偏極によって支配され、外部トルクの作用の下で進行する。
我々はFGの力学と感度をモデル化し、実験的な実現のための実践的なスキームに焦点をあてる。
論文 参考訳(メタデータ) (2020-10-17T07:13:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。