Can LLMs Reason in the Wild with Programs?
- URL: http://arxiv.org/abs/2406.13764v1
- Date: Wed, 19 Jun 2024 18:26:19 GMT
- Title: Can LLMs Reason in the Wild with Programs?
- Authors: Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, Faramarz Fekri,
- Abstract summary: We introduce the task of reasoning in the wild, where an LLM is tasked to solve a reasoning problem of unknown type.
We create a large tactic-guided trajectory dataset containing detailed solutions to a diverse set of reasoning problems.
In experiments, we highlight that existing LLMs fail significantly on problems with ambiguous and mixed scope.
- Score: 20.47557047823847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown superior capability to solve reasoning problems with programs. While being a promising direction, most of such frameworks are trained and evaluated in settings with a prior knowledge of task requirements. However, as LLMs become more capable, it is necessary to assess their reasoning abilities in more realistic scenarios where many real-world problems are open-ended with ambiguous scope, and often require multiple formalisms to solve. To investigate this, we introduce the task of reasoning in the wild, where an LLM is tasked to solve a reasoning problem of unknown type by identifying the subproblems and their corresponding formalisms, and writing a program to solve each subproblem, guided by a tactic. We create a large tactic-guided trajectory dataset containing detailed solutions to a diverse set of reasoning problems, ranging from well-defined single-form reasoning (e.g., math, logic), to ambiguous and hybrid ones (e.g., commonsense, combined math and logic). This allows us to test various aspects of LLMs reasoning at the fine-grained level such as the selection and execution of tactics, and the tendency to take undesired shortcuts. In experiments, we highlight that existing LLMs fail significantly on problems with ambiguous and mixed scope, revealing critical limitations and overfitting issues (e.g. accuracy on GSM8K drops by at least 50\%). We further show the potential of finetuning a local LLM on the tactic-guided trajectories in achieving better performance. Project repo is available at github.com/gblackout/Reason-in-the-Wild
Related papers
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.
We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.
Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - Automatic Curriculum Expert Iteration for Reliable LLM Reasoning [60.60318625779015]
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning.
Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning.
We propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities.
arXiv Detail & Related papers (2024-10-10T05:43:07Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - Flow of Reasoning:Training LLMs for Divergent Problem Solving with Minimal Examples [12.48027669682156]
Flow of Reasoning aims to improve reasoning quality and diversity with minimal data.
FoR formulates multi-step LLM reasoning as a Markovian flow on a DAG-structured reasoning graph.
Experiments show that, with limited training examples, FoR enables the discovery of diverse, creative, high-quality solutions.
arXiv Detail & Related papers (2024-06-09T07:06:58Z) - Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.