Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
- URL: http://arxiv.org/abs/2410.07627v1
- Date: Thu, 10 Oct 2024 05:43:07 GMT
- Title: Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
- Authors: Zirui Zhao, Hanze Dong, Amrita Saha, Caiming Xiong, Doyen Sahoo,
- Abstract summary: Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning.
Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning.
We propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities.
- Score: 60.60318625779015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness.
Related papers
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.
We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.
Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Can LLMs Reason in the Wild with Programs? [20.47557047823847]
We introduce the task of reasoning in the wild, where an LLM is tasked to solve a reasoning problem of unknown type.
We create a large tactic-guided trajectory dataset containing detailed solutions to a diverse set of reasoning problems.
In experiments, we highlight that existing LLMs fail significantly on problems with ambiguous and mixed scope.
arXiv Detail & Related papers (2024-06-19T18:26:19Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
Large Language Models (LLMs) have been found to have difficulty knowing they do not possess certain knowledge.
Retrieval Augmentation (RA) has been extensively studied to mitigate LLMs' hallucinations.
We propose several methods to enhance LLMs' perception of knowledge boundaries and show that they are effective in reducing overconfidence.
arXiv Detail & Related papers (2024-02-18T04:57:19Z) - Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination? [73.454943870226]
This work studies a specific type of hallucination induced by semantic associations.
To quantify this phenomenon, we propose a novel probing method and benchmark called EureQA.
arXiv Detail & Related papers (2023-11-16T09:27:36Z) - Temporal Knowledge Question Answering via Abstract Reasoning Induction [32.08799860090592]
This study addresses the challenge of enhancing temporal knowledge reasoning in Large Language Models (LLMs)
We propose Abstract Reasoning Induction (ARI) framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based.
Our approach achieves remarkable improvements, with relative gains of 29.7% and 9.27% on two temporal QA datasets.
arXiv Detail & Related papers (2023-11-15T17:46:39Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Making Large Language Models Better Reasoners with Alignment [57.82176656663245]
Reasoning is a cognitive process of using evidence to reach a sound conclusion.
Recent studies reveal that fine-tuning LLMs on data with the chain of thought (COT) reasoning process can significantly enhance their reasoning capabilities.
We introduce an textitAlignment Fine-Tuning (AFT) paradigm, which involves three steps.
arXiv Detail & Related papers (2023-09-05T11:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.