Single-shot quantum machine learning
- URL: http://arxiv.org/abs/2406.13812v1
- Date: Wed, 19 Jun 2024 20:17:18 GMT
- Title: Single-shot quantum machine learning
- Authors: Erik Recio-Armengol, Jens Eisert, Johannes Jakob Meyer,
- Abstract summary: We analyze when quantum learning models can produce predictions in a near-deterministic way.
We show that the degree to which a quantum learning model is near-deterministic is constrained by the distinguishability of the embedded quantum states.
We conclude by showing that quantum learning models cannot be single-shot in a generic way and trainable at the same time.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning aims to improve learning methods through the use of quantum computers. If it is to ever realize its potential, many obstacles need to be overcome. A particularly pressing one arises at the prediction stage because the outputs of quantum learning models are inherently random. This creates an often considerable overhead, as many executions of a quantum learning model have to be aggregated to obtain an actual prediction. In this work, we analyze when quantum learning models can evade this issue and produce predictions in a near-deterministic way -- paving the way to single-shot quantum machine learning. We give a rigorous definition of single-shotness in quantum classifiers and show that the degree to which a quantum learning model is near-deterministic is constrained by the distinguishability of the embedded quantum states used in the model. Opening the black box of the embedding, we show that if the embedding is realized by quantum circuits, a certain depth is necessary for single-shotness to be even possible. We conclude by showing that quantum learning models cannot be single-shot in a generic way and trainable at the same time.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum machine learning with indefinite causal order [0.0]
In a conventional circuit for quantum machine learning, the quantum gates used to encode the input parameters are constructed with a fixed order.
We introduce indefinite causal order to quantum machine learning.
arXiv Detail & Related papers (2024-03-06T08:22:52Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Adiabatic quantum learning [0.0]
This work proposes to execute some quantum learning protocols based entirely on adiabatic quantum evolution.
By contrast, the proposed adiabatic quantum learning here may be integrated with future adiabatic weak measurement protocols.
arXiv Detail & Related papers (2023-03-02T07:27:29Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Pattern capacity of a single quantum perceptron [0.0]
Recent developments in Quantum Machine Learning have seen the introduction of several models to generalize the classical perceptron to the quantum regime.
Here we use a statistical physics approach to compute the pattern capacity of a particular model of quantum perceptron realized by means of a continuous variable quantum system.
arXiv Detail & Related papers (2021-12-19T10:57:08Z) - Power of data in quantum machine learning [2.1012068875084964]
We show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data.
We propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime.
arXiv Detail & Related papers (2020-11-03T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.