Cluster Quilting: Spectral Clustering for Patchwork Learning
- URL: http://arxiv.org/abs/2406.13833v1
- Date: Wed, 19 Jun 2024 20:52:47 GMT
- Title: Cluster Quilting: Spectral Clustering for Patchwork Learning
- Authors: Lili Zheng, Andersen Chang, Genevera I. Allen,
- Abstract summary: We focus on the clustering problem in patchwork learning, aiming at discovering clusters amongst all samples even when some are never jointly observed for any feature.
We propose a novel spectral clustering method called Cluster Quilting, consisting of (i) patch ordering that exploits the overlapping structure amongst all patches, (ii) patchwise SVD, (iii) sequential linear mapping of top singular vectors for patch overlaps, followed by (iv) k-means on the combined and weighted singular vectors.
Under a sub-Gaussian mixture model, we establish theoretical guarantees via a non-asymptotic misclustering rate bound that reflects both
- Score: 8.500141848121782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patchwork learning arises as a new and challenging data collection paradigm where both samples and features are observed in fragmented subsets. Due to technological limits, measurement expense, or multimodal data integration, such patchwork data structures are frequently seen in neuroscience, healthcare, and genomics, among others. Instead of analyzing each data patch separately, it is highly desirable to extract comprehensive knowledge from the whole data set. In this work, we focus on the clustering problem in patchwork learning, aiming at discovering clusters amongst all samples even when some are never jointly observed for any feature. We propose a novel spectral clustering method called Cluster Quilting, consisting of (i) patch ordering that exploits the overlapping structure amongst all patches, (ii) patchwise SVD, (iii) sequential linear mapping of top singular vectors for patch overlaps, followed by (iv) k-means on the combined and weighted singular vectors. Under a sub-Gaussian mixture model, we establish theoretical guarantees via a non-asymptotic misclustering rate bound that reflects both properties of the patch-wise observation regime as well as the clustering signal and noise dependencies. We also validate our Cluster Quilting algorithm through extensive empirical studies on both simulated and real data sets in neuroscience and genomics, where it discovers more accurate and scientifically more plausible clusters than other approaches.
Related papers
- Spectral Clustering in Convex and Constrained Settings [0.0]
We introduce a novel framework for seamlessly integrating pairwise constraints into semidefinite spectral clustering.
Our methodology systematically extends the capabilities of semidefinite spectral clustering to capture complex data structures.
arXiv Detail & Related papers (2024-04-03T18:50:14Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
We present Semi-supervised clustering via Structural Entropy (SSE), a novel method that can incorporate different types of constraints from diverse sources to perform both partitioning and hierarchical clustering.
We evaluate SSE on nine clustering datasets and compare it with eleven semi-supervised partitioning and hierarchical clustering methods.
arXiv Detail & Related papers (2023-12-18T04:00:40Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
Some pairs of finetuned models have large barriers of increasing loss on the linear paths between them.
We find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster.
Our work demonstrates how the geometry of the loss surface can guide models towards different functions.
arXiv Detail & Related papers (2022-05-24T23:43:02Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - UCSL : A Machine Learning Expectation-Maximization framework for
Unsupervised Clustering driven by Supervised Learning [2.133032470368051]
Subtype Discovery consists in finding interpretable and consistent sub-parts of a dataset, which are also relevant to a certain supervised task.
We propose a general Expectation-Maximization ensemble framework entitled UCSL (Unsupervised Clustering driven by Supervised Learning)
Our method is generic, it can integrate any clustering method and can be driven by both binary classification and regression.
arXiv Detail & Related papers (2021-07-05T12:55:13Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Robust spectral clustering using LASSO regularization [0.0]
This paper presents a variant of spectral clustering, called 1-spectral clustering, performed on a new random model closely related to block model.
Its goal is to promote a sparse eigenbasis solution of a 1 minimization problem revealing the natural structure of the graph.
arXiv Detail & Related papers (2020-04-08T07:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.