A Systematic Literature Review on the Use of Machine Learning in Software Engineering
- URL: http://arxiv.org/abs/2406.13877v1
- Date: Wed, 19 Jun 2024 23:04:27 GMT
- Title: A Systematic Literature Review on the Use of Machine Learning in Software Engineering
- Authors: Nyaga Fred, I. O. Temkin,
- Abstract summary: The study was carried out following the objective and the research questions to explore the current state of the art in applying machine learning techniques in software engineering processes.
The review identifies the key areas within software engineering where ML has been applied, including software quality assurance, software maintenance, software comprehension, and software documentation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software engineering (SE) is a dynamic field that involves multiple phases all of which are necessary to develop sustainable software systems. Machine learning (ML), a branch of artificial intelligence (AI), has drawn a lot of attention in recent years thanks to its ability to analyze massive volumes of data and extract useful patterns from data. Several studies have focused on examining, categorising, and assessing the application of ML in SE processes. We conducted a literature review on primary studies to address this gap. The study was carried out following the objective and the research questions to explore the current state of the art in applying machine learning techniques in software engineering processes. The review identifies the key areas within software engineering where ML has been applied, including software quality assurance, software maintenance, software comprehension, and software documentation. It also highlights the specific ML techniques that have been leveraged in these domains, such as supervised learning, unsupervised learning, and deep learning. Keywords: machine learning, deep learning, software engineering, natural language processing, source code
Related papers
- Deep Learning-based Software Engineering: Progress, Challenges, and Opportunities [29.934835831037347]
We present the first task-oriented survey on deep learning-based software engineering.
It covers twelve major software engineering subareas significantly impacted by deep learning techniques.
arXiv Detail & Related papers (2024-10-17T00:46:00Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - Machine Learning for Software Engineering: A Tertiary Study [13.832268599253412]
Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities.
We systematically collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009-2022, covering 6,117 primary studies.
The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging for ML.
arXiv Detail & Related papers (2022-11-17T09:19:53Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - A Software Engineering Perspective on Engineering Machine Learning
Systems: State of the Art and Challenges [0.0]
Advancements in machine learning (ML) lead to a shift from the traditional view of software development, where algorithms are hard-coded by humans, to ML systems materialized through learning from data.
We need to revisit our ways of developing software systems and consider the particularities required by these new types of systems.
arXiv Detail & Related papers (2020-12-14T20:06:31Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
This study aims to investigate how software engineering has been applied in the development of AI/ML systems.
Main challenges faced by professionals are in areas of testing, AI software quality, and data management.
arXiv Detail & Related papers (2020-11-07T11:06:28Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.