Simultaneous Map and Object Reconstruction
- URL: http://arxiv.org/abs/2406.13896v1
- Date: Wed, 19 Jun 2024 23:53:31 GMT
- Title: Simultaneous Map and Object Reconstruction
- Authors: Nathaniel Chodosh, Anish Madan, Deva Ramanan, Simon Lucey,
- Abstract summary: We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.
We take inspiration from recent novel view synthesis methods and pose the reconstruction problem as a global optimization.
By careful modeling of continuous-time motion, our reconstructions can compensate for the rolling shutter effects of rotating LiDAR sensors.
- Score: 66.66729715211642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR. Depth-based reconstructions tend to focus on small-scale objects or large-scale SLAM reconstructions that treat moving objects as outliers. We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly moving objects and the background. To achieve this, we take inspiration from recent novel view synthesis methods and pose the reconstruction problem as a global optimization, minimizing the distance between our predicted surface and the input LiDAR scans. We show how this global optimization can be decomposed into registration and surface reconstruction steps, which are handled well by off-the-shelf methods without any re-training. By careful modeling of continuous-time motion, our reconstructions can compensate for the rolling shutter effects of rotating LiDAR sensors. This allows for the first system (to our knowledge) that properly motion compensates LiDAR scans for rigidly-moving objects, complementing widely-used techniques for motion compensation of static scenes. Beyond pursuing dynamic reconstruction as a goal in and of itself, we also show that such a system can be used to auto-label partially annotated sequences and produce ground truth annotation for hard-to-label problems such as depth completion and scene flow.
Related papers
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - OmniRe: Omni Urban Scene Reconstruction [78.99262488964423]
We introduce OmniRe, a holistic approach for efficiently reconstructing high-fidelity dynamic urban scenes from on-device logs.
We propose a comprehensive 3DGS framework for driving scenes, named OmniRe, that allows for accurate, full-length reconstruction of diverse dynamic objects in a driving log.
arXiv Detail & Related papers (2024-08-29T17:56:33Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner.
Our method takes multi-view RGB videos and background images from static cameras with known camera parameters as input.
We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
arXiv Detail & Related papers (2023-08-16T09:50:35Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
We propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes.
The input are high-resolution RGBD images captured by a mobile, hand-held capture system with point lights for active illumination.
arXiv Detail & Related papers (2023-06-06T15:07:39Z) - Multi-View Neural Surface Reconstruction with Structured Light [7.709526244898887]
Three-dimensional (3D) object reconstruction based on differentiable rendering (DR) is an active research topic in computer vision.
We introduce active sensing with structured light (SL) into multi-view 3D object reconstruction based on DR to learn the unknown geometry and appearance of arbitrary scenes and camera poses.
Our method realizes high reconstruction accuracy in the textureless region and reduces efforts for camera pose calibration.
arXiv Detail & Related papers (2022-11-22T03:10:46Z) - Visual-Inertial Multi-Instance Dynamic SLAM with Object-level
Relocalisation [14.302118093865849]
We present a tightly-coupled visual-inertial object-level multi-instance dynamic SLAM system.
It can robustly optimise for the camera pose, velocity, IMU biases and build a dense 3D reconstruction object-level map of the environment.
arXiv Detail & Related papers (2022-08-08T17:13:24Z) - Reconstructing Interactive 3D Scenes by Panoptic Mapping and CAD Model
Alignments [81.38641691636847]
We rethink the problem of scene reconstruction from an embodied agent's perspective.
We reconstruct an interactive scene using RGB-D data stream.
This reconstructed scene replaces the object meshes in the dense panoptic map with part-based articulated CAD models.
arXiv Detail & Related papers (2021-03-30T05:56:58Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
A novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views.
We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-24T08:16:32Z) - Monocular Real-Time Volumetric Performance Capture [28.481131687883256]
We present the first approach to volumetric performance capture and novel-view rendering at real-time speed from monocular video.
Our system reconstructs a fully textured 3D human from each frame by leveraging Pixel-Aligned Implicit Function (PIFu)
We also introduce an Online Hard Example Mining (OHEM) technique that effectively suppresses failure modes due to the rare occurrence of challenging examples.
arXiv Detail & Related papers (2020-07-28T04:45:13Z) - Reconstruct, Rasterize and Backprop: Dense shape and pose estimation
from a single image [14.9851111159799]
This paper presents a new system to obtain dense object reconstructions along with 6-DoF poses from a single image.
We leverage recent advances in differentiable rendering (in particular, robotics) to close the loop with 3D reconstruction in camera frame.
arXiv Detail & Related papers (2020-04-25T20:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.