論文の概要: Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
- arxiv url: http://arxiv.org/abs/2406.13934v1
- Date: Thu, 20 Jun 2024 02:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:46:37.859550
- Title: Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
- Title(参考訳): 医師としての推論:診断推論プロセスアライメントによる医療対話システムの改善
- Authors: Kaishuai Xu, Yi Cheng, Wenjun Hou, Qiaoyu Tan, Wenjie Li,
- Abstract要約: 本研究の目的は,臨床医の診断推論プロセスと整合した医療対話システムの構築である。
適切な応答を生成するために設計された新しいフレームワークであるエミュレーションを提案する。
当社の枠組みは, 医療相談における透明性の向上を図り, 反応の明確な説明を提供する。
- 参考スコア(独自算出の注目度): 14.563188427409958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians' diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians' diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician's reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians' diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
- Abstract(参考訳): 医療対話システムは、医療助手として機能する可能性に対して大きな注目を集めている。
臨床医の診断推論過程をエミュレートするためにこれらの医療システムを導入することが長年の研究課題であった。
従来の研究では,高品質な対話データセットを用いた微調整言語モデルによる臨床医の診断過程のシミュレーションが初歩的に実現された。
それでも、彼らは内的思考プロセスを無視し、臨床医の嗜好と一致しながら、臨床医の推論過程の結果に過度にフォーカスする。
本研究の目的は,臨床医の診断推論プロセスと整合した医療対話システムの構築である。
本稿では,帰納的および帰納的診断推論分析に依拠し,思考過程モデリングによる臨床医の嗜好に適合する適切な応答を生成するための新しいフレームワークであるエミュレーションを提案する。
2つのデータセットの実験結果からエミュレーションの有効性が確認された。
重要な点として、当社の枠組みは、医療相談における透明性を高めるために、発生した反応の明確な説明を提供する。
関連論文リスト
- A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
患者情報収集作業を自動化する診断対話システムを提案する。
医療史と会話のロジックを活用することで、会話エージェントは複数回にわたる臨床クエリを作成できる。
実世界の医療会話データセットを用いた実験結果から,本モデルが実際の医師の会話スタイルを模倣した臨床クエリを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T19:32:11Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Medical Dialogue Generation via Intuitive-then-Analytical Differential
Diagnosis [14.17497921394565]
Intuitive-then-Analytic Differential Diagnosis (IADDx) を用いた医用対話生成フレームワークを提案する。
本手法は,検索に基づく直感的アソシエーション(直感的アソシエーション)によるディファレンス診断から始まり,その後,グラフ強化解析手法により精査する。
提案手法の有効性を2つのデータセットで検証した。
論文 参考訳(メタデータ) (2024-01-12T12:35:19Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
本稿では,素早い学習を通して診断過程を合理化する「推論認識」診断フレームワークを提案する。
そこで本研究では,実世界の臨床環境に対する機械生成的合理化の可能性を評価するための新しい基準セットを提案する。
論文 参考訳(メタデータ) (2023-12-12T16:14:45Z) - Towards Trustworthy Automatic Diagnosis Systems by Emulating Doctors'
Reasoning with Deep Reinforcement Learning [2.314562406457073]
深層強化学習フレームワークを用いて証拠取得と自動診断タスクをモデル化することを提案する。
提案手法は, 競合する病理学予測精度を維持しつつ, 既存モデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-10-13T17:17:17Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。