論文の概要: Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition
- arxiv url: http://arxiv.org/abs/2406.14014v1
- Date: Thu, 20 Jun 2024 06:08:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:17:16.715165
- Title: Feature Fusion Based on Mutual-Cross-Attention Mechanism for EEG Emotion Recognition
- Title(参考訳): 脳波感情認識のための相互クロスアテンション機構に基づく特徴融合
- Authors: Yimin Zhao, Jin Gu,
- Abstract要約: 我々はMutual-Cross-Attention (MCA) と呼ばれる新規で効果的な機能融合機構を提案する。
MCAは脳波データにおける時間領域と周波数領域の特徴の相補的関係を発見する。
提案手法は最終的にDEAデータセット上で99.49%(原子価)と99.30%(原子価)の精度を達成する。
- 参考スコア(独自算出の注目度): 0.5985204759362747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An objective and accurate emotion diagnostic reference is vital to psychologists, especially when dealing with patients who are difficult to communicate with for pathological reasons. Nevertheless, current systems based on Electroencephalography (EEG) data utilized for sentiment discrimination have some problems, including excessive model complexity, mediocre accuracy, and limited interpretability. Consequently, we propose a novel and effective feature fusion mechanism named Mutual-Cross-Attention (MCA). Combining with a specially customized 3D Convolutional Neural Network (3D-CNN), this purely mathematical mechanism adeptly discovers the complementary relationship between time-domain and frequency-domain features in EEG data. Furthermore, the new designed Channel-PSD-DE 3D feature also contributes to the high performance. The proposed method eventually achieves 99.49% (valence) and 99.30% (arousal) accuracy on DEAP dataset.
- Abstract(参考訳): 客観的かつ正確な感情診断基準は心理学者にとって不可欠であり、特に病理学的理由からコミュニケーションが難しい患者を扱う際に重要である。
それでも、感情識別に使用される脳波(EEG)データに基づく現在のシステムには、過剰なモデルの複雑さ、中間精度、限定的な解釈可能性など、いくつかの問題がある。
そこで本研究では,Mutual-Cross-Attention (MCA) という新しい機能融合機構を提案する。
特別にカスタマイズされた3D畳み込みニューラルネットワーク(3D-CNN)と組み合わせることで、この純粋に数学的メカニズムは、EEGデータにおける時間領域と周波数領域の特徴の相補的関係を確実に発見する。
さらに、新しいChannel-PSD-DE 3D機能も高性能に寄与する。
提案手法は最終的にDEAデータセット上で99.49%(原子価)と99.30%(原子価)の精度を達成する。
関連論文リスト
- Decoding Human Emotions: Analyzing Multi-Channel EEG Data using LSTM Networks [0.0]
本研究では、Long Short-Term Memory (LSTM) ネットワークを用いて脳波信号を解析することにより、感情状態分類の予測精度を向上することを目的とする。
DEAPとして知られる多チャンネル脳波記録の一般的なデータセットを用いて、LSTMネットワークの特性を活用して、脳波信号データ内の時間的依存関係を処理する。
感情認識モデルの能力は, それぞれ89.89%, 90.33%, 90.70%, 90.54%であった。
論文 参考訳(メタデータ) (2024-08-19T18:10:47Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
本研究では,脳波信号の空間依存性と時間スペクトルの相対性を表す分布に基づく不確実性手法を提案する。
グラフ混合手法は、遅延接続エッジを強化し、ノイズラベル問題を緩和するために用いられる。
感情認識タスクにおいて、SEEDとSEEDIVという2つの広く使われているデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-10-22T03:47:11Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Hybrid Data Augmentation and Deep Attention-based Dilated
Convolutional-Recurrent Neural Networks for Speech Emotion Recognition [1.1086440815804228]
本稿では,GAN法に基づくハイブリッドデータ拡張法について検討する。
HDA法の有効性を評価するため,ディープラーニングフレームワークであるADCRNN(Deep Learning framework)を,深部拡張畳み込みリカレントニューラルネットワークとアテンション機構を統合して設計する。
提案手法の検証には,不均衡なサンプルを含む複数の感情からなるEmoDBデータセットを用いる。
論文 参考訳(メタデータ) (2021-09-18T23:13:44Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - Investigating EEG-Based Functional Connectivity Patterns for Multimodal
Emotion Recognition [8.356765961526955]
本稿では, 強度, クラスタリング, 係数, 固有ベクトル中心性という3つの機能接続ネットワーク特性について検討する。
感情認識における脳波接続機能の識別能力は,3つの公開脳波データセットで評価される。
脳波の機能的接続特徴と眼球運動や生理的信号の特徴を組み合わせたマルチモーダル感情認識モデルを構築した。
論文 参考訳(メタデータ) (2020-04-04T16:51:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。