CohortNet: Empowering Cohort Discovery for Interpretable Healthcare Analytics
- URL: http://arxiv.org/abs/2406.14015v1
- Date: Thu, 20 Jun 2024 06:12:23 GMT
- Title: CohortNet: Empowering Cohort Discovery for Interpretable Healthcare Analytics
- Authors: Qingpeng Cai, Kaiping Zheng, H. V. Jagadish, Beng Chin Ooi, James Yip,
- Abstract summary: We propose a cohort auto-discovery model, CohortNet, for interpretable healthcare analysis.
CohortNet learns fine-grained patient representations by separately processing each feature.
It classifies each feature into distinct states and employs a cohort exploration strategy.
- Score: 23.284528154162977
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cohort studies are of significant importance in the field of healthcare analysis. However, existing methods typically involve manual, labor-intensive, and expert-driven pattern definitions or rely on simplistic clustering techniques that lack medical relevance. Automating cohort studies with interpretable patterns has great potential to facilitate healthcare analysis but remains an unmet need in prior research efforts. In this paper, we propose a cohort auto-discovery model, CohortNet, for interpretable healthcare analysis, focusing on the effective identification, representation, and exploitation of cohorts characterized by medically meaningful patterns. CohortNet initially learns fine-grained patient representations by separately processing each feature, considering both individual feature trends and feature interactions at each time step. Subsequently, it classifies each feature into distinct states and employs a heuristic cohort exploration strategy to effectively discover substantial cohorts with concrete patterns. For each identified cohort, it learns comprehensive cohort representations with credible evidence through associated patient retrieval. Ultimately, given a new patient, CohortNet can leverage relevant cohorts with distinguished importance, which can provide a more holistic understanding of the patient's conditions. Extensive experiments on three real-world datasets demonstrate that it consistently outperforms state-of-the-art approaches and offers interpretable insights from diverse perspectives in a top-down fashion.
Related papers
- Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Toward Cohort Intelligence: A Universal Cohort Representation Learning
Framework for Electronic Health Record Analysis [15.137213823470544]
We propose a universal COhort Representation lEarning (CORE) framework to augment EHR utilization by leveraging the fine-grained cohort information among patients.
CORE is readily applicable to diverse backbone models, serving as a universal plug-in framework to infuse cohort information into healthcare methods for boosted performance.
arXiv Detail & Related papers (2023-04-10T09:12:37Z) - Contrastive learning for unsupervised medical image clustering and
reconstruction [0.23624125155742057]
We propose an unsupervised autoencoder framework which is augmented with a contrastive loss to encourage high separability in the latent space.
Our method achieves similar performance to the supervised architecture, indicating that separation in the latent space reproduces expert medical observer-assigned labels.
arXiv Detail & Related papers (2022-09-24T13:17:02Z) - Patient Aware Active Learning for Fine-Grained OCT Classification [12.89552245538411]
We propose a framework that incorporates clinical insights into the sample selection process of active learning.
Our medically interpretable active learning framework captures diverse disease manifestations from patients to improve performance of OCT classification.
arXiv Detail & Related papers (2022-06-23T05:47:51Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - Evaluation of Complexity Measures for Deep Learning Generalization in
Medical Image Analysis [77.34726150561087]
PAC-Bayes flatness-based and path norm-based measures produce the most consistent explanation for the combination of models and data.
We also investigate the use of multi-task classification and segmentation approach for breast images.
arXiv Detail & Related papers (2021-03-04T20:58:22Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Deep Representation Learning of Electronic Health Records to Unlock
Patient Stratification at Scale [0.5498849973527224]
We present an unsupervised framework based on deep learning to process heterogeneous EHRs.
We derive patient representations that can efficiently and effectively enable patient stratification at scale.
arXiv Detail & Related papers (2020-03-14T00:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.