論文の概要: Ensembles of Probabilistic Regression Trees
- arxiv url: http://arxiv.org/abs/2406.14033v1
- Date: Thu, 20 Jun 2024 06:51:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 15:10:05.737811
- Title: Ensembles of Probabilistic Regression Trees
- Title(参考訳): 確率的回帰木の集合
- Authors: Alexandre Seiller, Éric Gaussier, Emilie Devijver, Marianne Clausel, Sami Alkhoury,
- Abstract要約: 木に基づくアンサンブル法は多くの応用や研究で回帰問題に成功している。
本研究では,確率分布に関する各領域の観察を割り当てることで,目的関数のスムーズな近似を提供する確率回帰木のアンサンブルバージョンについて検討する。
- 参考スコア(独自算出の注目度): 46.53457774230618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree-based ensemble methods such as random forests, gradient-boosted trees, and Bayesianadditive regression trees have been successfully used for regression problems in many applicationsand research studies. In this paper, we study ensemble versions of probabilisticregression trees that provide smooth approximations of the objective function by assigningeach observation to each region with respect to a probability distribution. We prove thatthe ensemble versions of probabilistic regression trees considered are consistent, and experimentallystudy their bias-variance trade-off and compare them with the state-of-the-art interms of performance prediction.
- Abstract(参考訳): ランダム林、勾配木、ベイジアン付加回帰木などの木に基づくアンサンブル法は、多くのアプリケーションや研究で回帰問題に成功している。
本稿では,確率分布について各領域にピーク観測を割り当てることで,目的関数のスムーズな近似を提供する確率回帰木のアンサンブルバージョンについて検討する。
確率回帰木のアンサンブルバージョンは一貫性があり, バイアス分散トレードオフを実験的に検討し, 性能予測の最先端条件と比較した。
関連論文リスト
- Building Trees for Probabilistic Prediction via Scoring Rules [0.0]
非パラメトリックな予測分布を生成するために木を修正することを研究する。
木を構築するための標準的な手法は、良い予測分布にはならないかもしれない。
我々は,適切なスコアリングルールに基づいて,木の分割基準を1つに変更することを提案する。
論文 参考訳(メタデータ) (2024-02-16T20:04:13Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - On the Pointwise Behavior of Recursive Partitioning and Its Implications
for Heterogeneous Causal Effect Estimation [8.394633341978007]
決定木学習は、ポイントワイズ推論にますます使われている。
適応決定木は、非消滅確率のノルムにおける収束の収束率を達成できないことを示す。
ランダムな森林は状況を改善することができ、貧弱な樹木をほぼ最適な手順に変えることができる。
論文 参考訳(メタデータ) (2022-11-19T21:28:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - TreeFlow: Going beyond Tree-based Gaussian Probabilistic Regression [0.0]
ツリーアンサンブルを使うことの利点と柔軟な確率分布をモデル化する能力を組み合わせたツリーベースアプローチであるTreeFlowを紹介した。
提案手法は, 諸量, 特徴量, 目標寸法の異なる回帰ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2022-06-08T20:06:23Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
予測不確実性推定の観点から,ランダム化木の様々なアンサンブルを再検討し,その挙動について検討する。
BwO林と呼ばれる無作為な樹木のアンサンブルを構築するための新しい手法を提案する。
実験により,既存の樹木モデルに対するBwO林の有効性と性能について様々な状況で検証した。
論文 参考訳(メタデータ) (2022-02-22T04:50:37Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Multivariate Boosted Trees and Applications to Forecasting and Control [0.0]
勾配強化木は、特定の損失関数を最小限に抑えるために、逐次モデルフィッティングと勾配降下を利用する非パラメトリック回帰木である。
本稿では,多変量隆起木を適応する計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-08T19:26:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。