LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting
- URL: http://arxiv.org/abs/2406.14045v2
- Date: Thu, 27 Feb 2025 23:12:38 GMT
- Title: LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting
- Authors: Yu-Neng Chuang, Songchen Li, Jiayi Yuan, Guanchu Wang, Kwei-Herng Lai, Songyuan Sui, Leisheng Yu, Sirui Ding, Chia-Yuan Chang, Qiaoyu Tan, Daochen Zha, Xia Hu,
- Abstract summary: We introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs.<n>It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, base model selection, data quantity, and dataset diversity.<n> Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods.
- Score: 69.33802286580786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time Series Forecasting (TSF) has long been a challenge in time series analysis. Inspired by the success of Large Language Models (LLMs), researchers are now developing Large Time Series Models (LTSMs)-universal transformer-based models that use autoregressive prediction-to improve TSF. However, training LTSMs on heterogeneous time series data poses unique challenges, including diverse frequencies, dimensions, and patterns across datasets. Recent endeavors have studied and evaluated various design choices aimed at enhancing LTSM training and generalization capabilities. However, these design choices are typically studied and evaluated in isolation and are not benchmarked collectively. In this work, we introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs, spanning pre-processing techniques, model configurations, and dataset configuration. It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, training paradigms, base model selection, data quantity, and dataset diversity. Furthermore, we combine the most effective design choices identified in our study. Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods on benchmark datasets.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.
Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Empowering Time Series Analysis with Synthetic Data: A Survey and Outlook in the Era of Foundation Models [104.17057231661371]
Time series analysis is crucial for understanding dynamics of complex systems.
Recent advances in foundation models have led to task-agnostic Time Series Foundation Models (TSFMs) and Large Language Model-based Time Series Models (TSLLMs)
Their success depends on large, diverse, and high-quality datasets, which are challenging to build due to regulatory, diversity, quality, and quantity constraints.
This survey provides a comprehensive review of synthetic data for TSFMs and TSLLMs, analyzing data generation strategies, their role in model pretraining, fine-tuning, and evaluation, and identifying future research directions.
arXiv Detail & Related papers (2025-03-14T13:53:46Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - M-CELS: Counterfactual Explanation for Multivariate Time Series Data Guided by Learned Saliency Maps [0.9374652839580181]
We introduce M-CELS, a counterfactual explanation model designed to enhance interpretability in multidimensional time series classification tasks.
Results demonstrate the superior performance of M-CELS in terms of validity, proximity, and sparsity.
arXiv Detail & Related papers (2024-11-04T22:16:24Z) - Metadata Matters for Time Series: Informative Forecasting with Transformers [70.38241681764738]
We propose a Metadata-informed Time Series Transformer (MetaTST) for time series forecasting.
To tackle the unstructured nature of metadata, MetaTST formalizes them into natural languages by pre-designed templates.
A Transformer encoder is employed to communicate series and metadata tokens, which can extend series representations by metadata information.
arXiv Detail & Related papers (2024-10-04T11:37:55Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
Time-series analysis plays a pivotal role across a range of critical applications, from finance to healthcare.
Traditional supervised learning methods first annotate extensive labels for time-series data in each task.
This paper introduces UniCL, a universal and scalable contrastive learning framework designed for pretraining time-series foundation models.
arXiv Detail & Related papers (2024-05-17T07:47:11Z) - Attractor Memory for Long-Term Time Series Forecasting: A Chaos Perspective [63.60312929416228]
textbftextitAttraos incorporates chaos theory into long-term time series forecasting.
We show that Attraos outperforms various LTSF methods on mainstream datasets and chaotic datasets with only one-twelfth of the parameters compared to PatchTST.
arXiv Detail & Related papers (2024-02-18T05:35:01Z) - MOMENT: A Family of Open Time-series Foundation Models [19.0845213853369]
We introduce MOMENT, a family of open-source foundation models for general-purpose time series analysis.
We compile a collection of public time series, called the Time series Pile, and systematically tackle time series-specific challenges.
We build on recent work to design a benchmark to evaluate time series foundation models on diverse tasks and datasets in limited supervision settings.
arXiv Detail & Related papers (2024-02-06T10:48:46Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Unified Long-Term Time-Series Forecasting Benchmark [0.6526824510982802]
We present a comprehensive dataset designed explicitly for long-term time-series forecasting.
We incorporate a collection of datasets obtained from diverse, dynamic systems and real-life records.
To determine the most effective model in diverse scenarios, we conduct an extensive benchmarking analysis using classical and state-of-the-art models.
Our findings reveal intriguing performance comparisons among these models, highlighting the dataset-dependent nature of model effectiveness.
arXiv Detail & Related papers (2023-09-27T18:59:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.