論文の概要: Constrained Meta Agnostic Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.14047v1
- Date: Thu, 20 Jun 2024 07:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 15:00:17.625259
- Title: Constrained Meta Agnostic Reinforcement Learning
- Title(参考訳): 制約付きメタ非依存強化学習
- Authors: Karam Daaboul, Florian Kuhm, Tim Joseph, J. Marius Zoellner,
- Abstract要約: 制約モデル非依存メタラーニング(C-MAML)
C-MAMLは、トレーニングフェーズ中にタスク固有の制約を直接メタアルゴリズムフレームワークに組み込むことで、迅速かつ効率的なタスク適応を可能にする。
C-MAMLは, 動的環境下での実用性と頑健さを強調し, 複雑度の異なる車輪付きロボットタスクを用いたシミュレーションロコモーションにおける有効性を示す。
- 参考スコア(独自算出の注目度): 2.3749120526936465
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Meta-Reinforcement Learning (Meta-RL) aims to acquire meta-knowledge for quick adaptation to diverse tasks. However, applying these policies in real-world environments presents a significant challenge in balancing rapid adaptability with adherence to environmental constraints. Our novel approach, Constraint Model Agnostic Meta Learning (C-MAML), merges meta learning with constrained optimization to address this challenge. C-MAML enables rapid and efficient task adaptation by incorporating task-specific constraints directly into its meta-algorithm framework during the training phase. This fusion results in safer initial parameters for learning new tasks. We demonstrate the effectiveness of C-MAML in simulated locomotion with wheeled robot tasks of varying complexity, highlighting its practicality and robustness in dynamic environments.
- Abstract(参考訳): メタ強化学習(Meta-RL)は,多様なタスクに迅速に適応するためのメタ知識獲得を目的としている。
しかし,これらの政策を実環境に適用することは,環境制約に順応した迅速な適応性のバランスをとる上で大きな課題となる。
我々の新しいアプローチであるConstraint Model Agnostic Meta Learning (C-MAML)は、メタ学習と制約付き最適化を融合して、この問題に対処します。
C-MAMLは、トレーニングフェーズ中にタスク固有の制約を直接メタアルゴリズムフレームワークに組み込むことで、迅速かつ効率的なタスク適応を可能にする。
この融合は、新しいタスクを学ぶためのより安全な初期パラメータをもたらす。
C-MAMLは, 動的環境下での実用性と堅牢性を強調し, 複雑度が変化する車輪付きロボットの動作シミュレーションにおいて, 有効性を示す。
関連論文リスト
- HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
本稿では,各タスクに対するパラメータの最適な調和部分空間を特定するための新しいソリューションであるHarmoDT(Harmony Multi-Task Decision Transformer)を紹介する。
このフレームワークの上位レベルは、調和部分空間を規定するタスク固有のマスクの学習に特化しており、内部レベルは、統一されたポリシーの全体的なパフォーマンスを高めるためにパラメータの更新に重点を置いている。
論文 参考訳(メタデータ) (2024-05-28T11:41:41Z) - A CMDP-within-online framework for Meta-Safe Reinforcement Learning [23.57318558833378]
CMDP-within-onlineフレームワークを用いたメタセーフ強化学習(Meta-SRL)の課題について検討する。
我々は,勾配に基づくメタ学習を用いて,目に見えない(最適性ギャップ)と制約違反に対する平均的後悔境界を求める。
本稿では,タスク内最適性ギャップと制約違反の上限において,不正確なオンライン学習を行うメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-26T15:28:42Z) - MetaModulation: Learning Variational Feature Hierarchies for Few-Shot
Learning with Fewer Tasks [63.016244188951696]
本稿では,タスクを減らした少数ショット学習手法を提案する。
メタトレーニングタスクを増やすために、さまざまなバッチレベルでパラメータを変更します。
また,変分法を取り入れた学習的変分特徴階層も導入する。
論文 参考訳(メタデータ) (2023-05-17T15:47:47Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
メタラーナーの性能を向上させるために,SiMT(Self-improving Momentum Target)を提案する。
SiMTはメタラーナーの時間アンサンブルから適応してターゲットモデルを生成する。
我々は、SiMTが幅広いメタ学習手法と組み合わせることで、大きなパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2022-10-11T06:45:15Z) - Meta-Reinforcement Learning in Broad and Non-Parametric Environments [8.091658684517103]
非パラメトリック環境におけるタスクに対するタスク推論に基づくメタRLアルゴリズムTIGRを導入する。
我々は,タスク推論学習から政策訓練を分離し,教師なしの再構築目標に基づいて推論機構を効率的に訓練する。
半チーター環境に基づく定性的に異なるタスクのベンチマークを行い、最先端のメタRL手法と比較してTIGRの優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-08T19:32:44Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
現在のメタ学習アルゴリズムは多数のメタトレーニングタスクを必要としており、実際のシナリオではアクセスできない可能性がある。
タスクグラデーションを用いたメタラーニング(MLTI)により,タスクのペアをランダムにサンプリングし,対応する特徴やラベルを補間することにより,タスクを効果的に生成する。
実証的な実験では,提案する汎用MLTIフレームワークが代表的なメタ学習アルゴリズムと互換性があり,他の最先端戦略を一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-06-04T20:15:34Z) - On Fast Adversarial Robustness Adaptation in Model-Agnostic
Meta-Learning [100.14809391594109]
モデルに依存しないメタラーニング(MAML)は、数発の学習において最も成功したメタラーニング手法の1つである。
メタモデルの一般化力にもかかわらず、マルチショット学習においてMDLがいかに敵対的堅牢性を維持することができるかは明らかではない。
本稿では,ラベルなしデータ拡張,高速な攻撃生成,計算量軽微な微調整を可能にする,汎用的かつ最適化が容易なロバストネス正規化メタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-20T22:03:04Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Structured Prediction for Conditional Meta-Learning [44.30857707980074]
構造化予測を用いた条件付きメタラーニングの新しい視点を提案する。
タスク適応型構造化メタラーニング(TASML: Task-Adaptive Structured Meta-learning)は,タスク固有目的関数を生成する基本的フレームワークである。
実験により,TASMLは既存のメタラーニングモデルの性能を向上し,ベンチマークデータセットの最先端性を上回った。
論文 参考訳(メタデータ) (2020-02-20T15:24:15Z) - Curriculum in Gradient-Based Meta-Reinforcement Learning [10.447238563837173]
勾配に基づくメタラーナーはタスク分布に敏感であることを示す。
間違ったカリキュラムでは、エージェントはメタオーバーフィッティング、浅い適応、適応不安定の影響を被る。
論文 参考訳(メタデータ) (2020-02-19T01:40:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。