論文の概要: Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- arxiv url: http://arxiv.org/abs/2406.14069v1
- Date: Thu, 20 Jun 2024 07:45:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 15:00:17.597567
- Title: Towards Multi-modality Fusion and Prototype-based Feature Refinement for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
- Title(参考訳): 経直腸超音波による前立腺癌診断における多モード融合と原型的特徴再構成
- Authors: Hong Wu, Juan Fu, Hongsheng Ye, Yuming Zhong, Xuebin Zou, Jianhua Zhou, Yi Wang,
- Abstract要約: 臨床的に有意な前立腺癌(csPCa)分類のための多モードTRUSを用いた新しい学習フレームワークを提案する。
提案フレームワークは,Bモードとせん断波エラストグラフィ(SWE)から特徴を抽出するために,2つの別々の3D ResNet-50を用いている。
このフレームワークの性能は512のTRUSビデオと生検で得られた前立腺癌からなる大規模データセットで評価される。
- 参考スコア(独自算出の注目度): 4.662744612095781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prostate cancer is a highly prevalent cancer and ranks as the second leading cause of cancer-related deaths in men globally. Recently, the utilization of multi-modality transrectal ultrasound (TRUS) has gained significant traction as a valuable technique for guiding prostate biopsies. In this study, we propose a novel learning framework for clinically significant prostate cancer (csPCa) classification using multi-modality TRUS. The proposed framework employs two separate 3D ResNet-50 to extract distinctive features from B-mode and shear wave elastography (SWE). Additionally, an attention module is incorporated to effectively refine B-mode features and aggregate the extracted features from both modalities. Furthermore, we utilize few shot segmentation task to enhance the capacity of classification encoder. Due to the limited availability of csPCa masks, a prototype correction module is employed to extract representative prototypes of csPCa. The performance of the framework is assessed on a large-scale dataset consisting of 512 TRUS videos with biopsy-proved prostate cancer. The results demonstrate the strong capability in accurately identifying csPCa, achieving an area under the curve (AUC) of 0.86. Moreover, the framework generates visual class activation mapping (CAM), which can serve as valuable assistance for localizing csPCa. These CAM images may offer valuable guidance during TRUS-guided targeted biopsies, enhancing the efficacy of the biopsy procedure.The code is available at https://github.com/2313595986/SmileCode.
- Abstract(参考訳): 前立腺がんは非常に多いがんであり、世界で2番目に多い死因である。
近年,多モード経直腸超音波(TRUS)の利用は,前立腺生検を導く上で重要な技術として注目されている。
本研究では,多モードTRUSを用いた臨床上重要な前立腺癌(csPCa)分類のための新しい学習フレームワークを提案する。
提案フレームワークは2つの異なる3D ResNet-50を用いて,Bモードとせん断波エラストグラフィ(SWE)から特徴を抽出する。
さらに、Bモード特徴を効果的に洗練し、両方のモダリティから抽出した特徴を集約するために、アテンションモジュールが組み込まれている。
さらに,分類エンコーダのキャパシティを高めるために,ショットセグメンテーションタスクがほとんどない。
csPCaマスクの入手が限られているため、csPCaの代表プロトタイプを抽出するためにプロトタイプ修正モジュールが使用される。
このフレームワークの性能は512のTRUSビデオと生検で得られた前立腺癌からなる大規模データセットで評価される。
その結果、csPCaを正確に同定し、曲線(AUC)の0.86の領域を達成できる強い能力を示した。
さらに、このフレームワークは、csPCaのローカライズに有用な視覚クラスアクティベーションマッピング(CAM)を生成する。
これらのCAM画像は、TRUSに誘導された標的バイオプシーの間、貴重なガイダンスを提供し、生検手順の有効性を高め、https://github.com/2313595986/SmileCode.comで利用可能である。
関連論文リスト
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Multi-modality transrectal ultrasound video classification for
identification of clinically significant prostate cancer [4.896561300855359]
臨床的に重要な前立腺癌(csPCa)のマルチモーダルTRUSビデオから分類するための枠組みを提案する。
提案するフレームワークは,512本のTRUSビデオを含む社内データセットを用いて評価する。
論文 参考訳(メタデータ) (2024-02-14T07:06:30Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
前立腺癌(PCa)は世界中の男性の間で重篤な疾患である。早期にPCaを同定し,有効治療のための正確な診断を行うことが重要である。
深層学習(DL)モデルは、医師の関心領域を特定することで、既存の臨床システムを強化し、患者のケアを改善することができる。
本研究は, mpMRI画像の分類とセグメンテーションによく知られたDLモデルを用いてPCaを検出する。
論文 参考訳(メタデータ) (2023-10-09T03:00:15Z) - Implementation of Convolutional Neural Network Architecture on 3D
Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis [0.0]
磁気共鳴画像における前立腺病変の自動分類のための新しいディープラーニング手法を提案する。
提案手法は受信器動作特性曲線値0.87の領域で分類性能を達成した。
提案フレームワークは前立腺癌における医用画像の解釈を補助し,不必要な生検を減らす可能性を反映している。
論文 参考訳(メタデータ) (2021-12-29T16:47:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
本稿では,腫瘍セグメンテーションのトレーニングパラメータが最小限に抑えられたRCA-IUnetモデルについて紹介する。
RCA-IUnetモデルは、U-Netトポロジに従い、奥行きの深い分離可能な畳み込みとハイブリッドプール層を持つ。
無関係な特徴を抑え、対象構造に焦点を合わせるために、空間横断型アテンションフィルタが加えられる。
論文 参考訳(メタデータ) (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
複数のフェーズは単一のフェーズよりも多くの情報を提供するが、それらは整列せず、テクスチャにおいて不均一である。
PDAC検出性能を高めるために,これらすべてのアライメントのアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-03-18T19:06:27Z) - A Novel and Efficient Tumor Detection Framework for Pancreatic Cancer
via CT Images [21.627818410241552]
本稿では,新しい膵腫瘍検出フレームワークを提案する。
提案手法のコントリビューションは,Augmented Feature Pyramid Network,Self-Adaptive Feature Fusion,Dependencies Computation Moduleの3つのコンポーネントから構成される。
実験により,AUCの0.9455による検出において,他の最先端手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2020-02-11T15:48:22Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。