Seg-LSTM: Performance of xLSTM for Semantic Segmentation of Remotely Sensed Images
- URL: http://arxiv.org/abs/2406.14086v1
- Date: Thu, 20 Jun 2024 08:01:28 GMT
- Title: Seg-LSTM: Performance of xLSTM for Semantic Segmentation of Remotely Sensed Images
- Authors: Qinfeng Zhu, Yuanzhi Cai, Lei Fan,
- Abstract summary: This study is the first attempt to evaluate the effectiveness of Vision-LSTM in the semantic segmentation of remotely sensed images.
Our study found that Vision-LSTM's performance in semantic segmentation was limited and generally inferior to Vision-Transformers-based and Vision-Mamba-based models in most comparative tests.
- Score: 1.5954224931801726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in autoregressive networks with linear complexity have driven significant research progress, demonstrating exceptional performance in large language models. A representative model is the Extended Long Short-Term Memory (xLSTM), which incorporates gating mechanisms and memory structures, performing comparably to Transformer architectures in long-sequence language tasks. Autoregressive networks such as xLSTM can utilize image serialization to extend their application to visual tasks such as classification and segmentation. Although existing studies have demonstrated Vision-LSTM's impressive results in image classification, its performance in image semantic segmentation remains unverified. Our study represents the first attempt to evaluate the effectiveness of Vision-LSTM in the semantic segmentation of remotely sensed images. This evaluation is based on a specifically designed encoder-decoder architecture named Seg-LSTM, and comparisons with state-of-the-art segmentation networks. Our study found that Vision-LSTM's performance in semantic segmentation was limited and generally inferior to Vision-Transformers-based and Vision-Mamba-based models in most comparative tests. Future research directions for enhancing Vision-LSTM are recommended. The source code is available from https://github.com/zhuqinfeng1999/Seg-LSTM.
Related papers
- DAMamba: Vision State Space Model with Dynamic Adaptive Scan [51.81060691414399]
State space models (SSMs) have recently garnered significant attention in computer vision.
We propose Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates scanning orders and regions.
Based on DAS, we propose the vision backbone DAMamba, which significantly outperforms current state-of-the-art vision Mamba models in vision tasks.
arXiv Detail & Related papers (2025-02-18T08:12:47Z) - MAL: Cluster-Masked and Multi-Task Pretraining for Enhanced xLSTM Vision Performance [2.45239928345171]
We introduce MAL (Cluster-Masked and Multi-Task Pretraining for Enhanced xLSTM Vision Performance), a novel framework that enhances xLSTM's capabilities through innovative pretraining strategies.
We propose a cluster-masked masking method that significantly improves local feature capture and optimize image scanning efficiency.
Our universal encoder-decoder pretraining approach integrates multiple tasks, including image autoregression, depth estimation, and image segmentation, thereby enhancing the model's adaptability and robustness across diverse visual tasks.
arXiv Detail & Related papers (2024-12-14T07:58:24Z) - xLSTM-UNet can be an Effective 2D & 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart [13.812935743270517]
We propose xLSTM-UNet, a UNet structured deep learning neural network that leverages Vision-LSTM (xLSTM) as its backbone for medical image segmentation.
xLSTM is a recently proposed as the successor of Long Short-Term Memory (LSTM) networks.
Our findings demonstrate that xLSTM-UNet consistently surpasses the performance of leading CNN-based, Transformer-based, and Mamba-based segmentation networks.
arXiv Detail & Related papers (2024-07-01T17:59:54Z) - Are Vision xLSTM Embedded UNet More Reliable in Medical 3D Image Segmentation? [3.1777394653936937]
This paper investigates the integration of CNNs with Vision Extended Long-Term Memory (Vision-xLSTM)s.
Vision-xLSTM blocks capture temporal and global relationships within the patches, as extracted from the CNN feature maps.
Our primary objective is to propose that Vision-xLSTM forms an appropriate backbone for medical image segmentation, offering excellent performance with reduced computational costs.
arXiv Detail & Related papers (2024-06-24T08:01:05Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model [49.80313655590392]
PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges.
It incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks.
The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:47Z) - VM-UNet: Vision Mamba UNet for Medical Image Segmentation [2.3876474175791302]
We propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet)
We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks.
arXiv Detail & Related papers (2024-02-04T13:37:21Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation method (TRFS)
Our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM)
arXiv Detail & Related papers (2021-08-04T20:09:21Z) - Multi-Perspective LSTM for Joint Visual Representation Learning [81.21490913108835]
We present a novel LSTM cell architecture capable of learning both intra- and inter-perspective relationships available in visual sequences captured from multiple perspectives.
Our architecture adopts a novel recurrent joint learning strategy that uses additional gates and memories at the cell level.
We show that by using the proposed cell to create a network, more effective and richer visual representations are learned for recognition tasks.
arXiv Detail & Related papers (2021-05-06T16:44:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.