The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer
- URL: http://arxiv.org/abs/2504.10462v1
- Date: Mon, 14 Apr 2025 17:50:20 GMT
- Title: The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer
- Authors: Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, Zilong Huang,
- Abstract summary: This paper introduces SAIL, a single transformer unified multimodal large language model (MLLM)<n>Unlike existing modular MLLMs, which rely on a pre-trained vision transformer (ViT), SAIL eliminates the need for a separate vision encoder.<n>We systematically compare SAIL's properties-including scalability, cross-modal information flow patterns, and visual representation capabilities-with those of modular MLLMs.
- Score: 68.71557348281007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces SAIL, a single transformer unified multimodal large language model (MLLM) that integrates raw pixel encoding and language decoding within a singular architecture. Unlike existing modular MLLMs, which rely on a pre-trained vision transformer (ViT), SAIL eliminates the need for a separate vision encoder, presenting a more minimalist architecture design. Instead of introducing novel architectural components, SAIL adapts mix-attention mechanisms and multimodal positional encodings to better align with the distinct characteristics of visual and textual modalities. We systematically compare SAIL's properties-including scalability, cross-modal information flow patterns, and visual representation capabilities-with those of modular MLLMs. By scaling both training data and model size, SAIL achieves performance comparable to modular MLLMs. Notably, the removal of pretrained ViT components enhances SAIL's scalability and results in significantly different cross-modal information flow patterns. Moreover, SAIL demonstrates strong visual representation capabilities, achieving results on par with ViT-22B in vision tasks such as semantic segmentation. Code and models are available at https://github.com/bytedance/SAIL.
Related papers
- LLaVA-UHD v2: an MLLM Integrating High-Resolution Semantic Pyramid via Hierarchical Window Transformer [110.39467860530819]
Vision transformers (ViTs) are widely employed in multimodal large language models (MLLMs) for visual encoding.<n>We present LLaVA-UHD v2, an MLLM with advanced perception abilities by introducing a well-designed vision-language projector.<n>Hiwin transformer enhances MLLM's ability to capture diverse multi-modal visual granularities, by incorporating our constructed high-resolution semantic pyramid.
arXiv Detail & Related papers (2024-12-18T14:07:46Z) - SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding [66.74446220401296]
We propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation.
We introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding.
Our code and models shall be released.
arXiv Detail & Related papers (2024-12-12T18:59:26Z) - Seeing Syntax: Uncovering Syntactic Learning Limitations in Vision-Language Models [18.87130615326443]
Vision-language models (VLMs) serve as foundation models for image captioning and text-to-image generation.
Recent studies have highlighted limitations in VLM text encoders, particularly in areas like compositionality and semantic understanding.
arXiv Detail & Related papers (2024-12-11T05:37:04Z) - EMMA: Empowering Multi-modal Mamba with Structural and Hierarchical Alignment [39.870809905905325]
We propose Empowering Multi-modal Mamba with Structural and Hierarchical Alignment (EMMA) to extract fine-grained visual information.
Our model shows lower latency than other Mamba-based MLLMs and is nearly four times faster than transformer-based MLLMs of similar scale during inference.
arXiv Detail & Related papers (2024-10-08T11:41:55Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.
A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.
In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
We investigate the effectiveness of different vision encoders within Large Language Models (MLLMs)
Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding.
We propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging.
arXiv Detail & Related papers (2023-10-13T02:41:55Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.