論文の概要: Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
- arxiv url: http://arxiv.org/abs/2406.14115v1
- Date: Thu, 20 Jun 2024 08:58:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:40:46.092375
- Title: Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
- Title(参考訳): ドロスの本質と破棄--微調整大言語モデルにおけるデータ選択の再考
- Authors: Ziche Liu, Rui Ke, Feng Jiang, Haizhou Li,
- Abstract要約: 本稿では,データ選択のための3段階のスキームを提案し,既存の作品のレビューを行う。
データ特化ラベルとモデル特化ラベルを併用したよりターゲット的な手法の方が効率が良いことが判明した。
- 参考スコア(独自算出の注目度): 38.39395973523944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data selection for fine-tuning Large Language Models (LLMs) aims to select a high-quality subset from a given candidate dataset to train a Pending Fine-tune Model (PFM) into a Selective-Enhanced Model (SEM). It can improve the model performance and accelerate the training process. Although a few surveys have investigated related works of data selection, there is a lack of comprehensive comparison between existing methods due to their various experimental settings. To address this issue, we first propose a three-stage scheme for data selection and comprehensively review existing works according to this scheme. Then, we design a unified comparing method with ratio-based efficiency indicators and ranking-based feasibility indicators to overcome the difficulty of comparing various models with diverse experimental settings. After an in-depth comparative analysis, we find that the more targeted method with data-specific and model-specific quality labels has higher efficiency, but the introduction of additional noise information should be avoided when designing selection algorithms. Finally, we summarize the trends in data selection and highlight the short-term and long-term challenges to guide future research.
- Abstract(参考訳): 細調整大型言語モデル(LLM)のデータ選択は、与えられた候補データセットから高品質なサブセットを選択して、Pending Fine-Tune Model(PFM)をSEM(Selective-Enhanced Model)にトレーニングすることを目的としている。
モデルのパフォーマンスを改善し、トレーニングプロセスを加速できます。
関連するデータ選択に関する調査はいくつかあるが, 各種実験条件による既存手法との総合的な比較は乏しい。
この問題に対処するために、まずデータ選択のための3段階のスキームを提案し、このスキームに従って既存の作品を包括的にレビューする。
そこで我々は,様々なモデルと多様な実験環境を比べることの難しさを克服するために,比に基づく効率指標とランキングに基づく実現可能性指標との統一比較手法を設計した。
詳細な比較分析の結果,データ特化ラベルやモデル特化ラベルを対象とする手法の方が効率が高いことがわかったが,選択アルゴリズムの設計において,付加的なノイズ情報の導入は避けるべきである。
最後に,データ選択の傾向を概説し,今後の研究を導くための短期的・長期的課題を強調した。
関連論文リスト
- TSDS: Data Selection for Task-Specific Model Finetuning [39.19448080265558]
タスク固有の微調整の有効性は、適切なトレーニングデータの選択に大きく依存する。
本稿では,タスク固有のモデル微調整のためのデータ選択フレームワークであるTSDS(Task-Specific Data Selection)を提案する。
提案手法で選択したデータを用いて,1%選択率で命令チューニングを行う場合,全データセットで処理性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-15T05:54:17Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
本研究では,因果推論におけるモデル選択の問題,特に条件付き平均処理効果(CATE)の推定について検討する。
本研究では,本研究で導入されたサロゲートモデル選択指標と,本研究で導入された新しい指標のベンチマークを行う。
論文 参考訳(メタデータ) (2022-11-03T16:26:06Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
トレーニングポイントが様々な影響を持つ場合、ランダムサンプリングよりも優れたモデル固有データサブサンプリング戦略を開発する。
具体的には、影響関数を活用して、選択戦略をガイドし、理論的に証明し、我々のアプローチが素早く高品質なモデルを選択することを実証する。
論文 参考訳(メタデータ) (2020-10-20T12:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。