論文の概要: Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
- arxiv url: http://arxiv.org/abs/2406.14115v2
- Date: Mon, 24 Feb 2025 07:59:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 22:36:55.361792
- Title: Take the essence and discard the dross: A Rethinking on Data Selection for Fine-Tuning Large Language Models
- Title(参考訳): ドロスの本質と破棄--微調整大言語モデルにおけるデータ選択の再考
- Authors: Ziche Liu, Rui Ke, Yajiao Liu, Feng Jiang, Haizhou Li,
- Abstract要約: 微調整された大規模言語モデル(LLM)のデータ選択は、既存のデータセットから高品質なサブセットを選択することを目的としている。
既存の調査では、微調整フェーズの詳細な調査を見落としている。
特徴抽出, 基準設計, セレクタ評価を含む新しい3段階の手法を導入し, これらの手法を体系的に分類し, 評価する。
- 参考スコア(独自算出の注目度): 36.22392593103493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data selection for fine-tuning large language models (LLMs) aims to choose a high-quality subset from existing datasets, allowing the trained model to outperform baselines trained on the full dataset. However, the expanding body of research lacks a clear, unified framework, and the variability in experimental settings complicates systematic comparisons. While existing surveys comprehensively overview the stages and methods of data selection, they often overlook an in-depth exploration of the fine-tuning phase. In this paper, we conduct a focused review of recent data selection techniques for fine-tuning LLMs, analyzing a dozen key studies. We introduce a novel three-stage scheme - comprising feature extraction, criteria design, and selector evaluation - to systematically categorize and evaluate these methods. Additionally, we propose a unified comparison approach that incorporates ratio-based efficiency and ranking-based feasibility metrics to address inconsistencies across experiments. Our findings reveal that methods emphasizing more targeted quality measurement achieve higher efficiency but at the cost of feasibility. Finally, we discuss trends and highlight four key challenges in fine-tuning data selection, offering potential directions for future research.
- Abstract(参考訳): 微調整された大きな言語モデル(LLM)のためのデータ選択は、既存のデータセットから高品質なサブセットを選択することを目的としており、トレーニングされたモデルは、フルデータセットでトレーニングされたベースラインを上回ります。
しかし、研究の拡充には明確な統一された枠組みが欠如しており、実験環境における多様性は体系的な比較を複雑にしている。
既存の調査では、データ選択の段階と方法が概観されているが、微調整フェーズの詳細な調査を見落としていることが多い。
本稿では,近年の微調整LDMにおけるデータ選択手法を概観し,十数件の鍵研究を解析する。
特徴抽出, 基準設計, セレクタ評価を含む新しい3段階の手法を導入し, これらの手法を体系的に分類し, 評価する。
さらに,実験間の不整合に対処するために,比率ベース効率とランキングベースの実現可能性指標を取り入れた統合比較手法を提案する。
その結果, より標的となる品質測定を重視する手法は, 高い効率性を実現するが, 実現可能性の犠牲になることがわかった。
最後に、トレンドについて議論し、微調整データ選択における4つの重要な課題を強調し、今後の研究の方向性を示す。
関連論文リスト
- Add-One-In: Incremental Sample Selection for Large Language Models via a Choice-Based Greedy Paradigm [41.4789135538612]
本稿では,各サンプルの品質評価から,各サンプルのコントリビューション値の比較に焦点を移す,新しい選択型サンプル選択フレームワークを提案する。
LLM(Large Language Models)の高度な言語理解機能により,LLMを用いて選択過程における各オプションの価値を評価する。
論文 参考訳(メタデータ) (2025-03-04T07:32:41Z) - TSDS: Data Selection for Task-Specific Model Finetuning [39.19448080265558]
タスク固有の微調整の有効性は、適切なトレーニングデータの選択に大きく依存する。
本稿では,タスク固有のモデル微調整のためのデータ選択フレームワークであるTSDS(Task-Specific Data Selection)を提案する。
提案手法で選択したデータを用いて,1%選択率で命令チューニングを行う場合,全データセットで処理性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-15T05:54:17Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Diversify and Conquer: Diversity-Centric Data Selection with Iterative Refinement [8.509688686402438]
命令データ上での大規模言語モデルの微調整は、事前訓練された知識の強化と命令追従能力の向上に不可欠である。
この作業は問題に対処する: 効果的なトレーニングのために、データの最適なサブセットをどうやって決定できるのか?
提案手法では,k平均クラスタリングを用いて,選択したサブセットが全データセットを効果的に表現できるようにする。
論文 参考訳(メタデータ) (2024-09-17T17:25:31Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models [33.488331159912136]
インストラクションチューニングは、大きな言語モデル(LLM)と人間の嗜好の整合において重要な役割を果たす。
自然言語処理(NLP)とディープラーニングの分野において,データアセスメントと選択手法が提案されている。
本稿では,データアセスメントと選択に関する既存の文献を総合的にレビューし,特にLLMの命令チューニングについて述べる。
論文 参考訳(メタデータ) (2024-08-04T16:50:07Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
標準的なプラクティスは、データ品質という人間の考え方にマッチする例をフィルタリングすることです。
質の高い"データソースとの類似性に応じた選択は、ランダムに選択するデータに比べてパフォーマンスが向上しない(さらに傷つく)可能性がある。
我々のフレームワークは、データ品質に関する手作業による概念を回避し、学習プロセスがターゲットタスクの予測にデータポイントをトレーニングする方法を明確にモデル化する。
論文 参考訳(メタデータ) (2024-01-23T17:22:00Z) - A data-science pipeline to enable the Interpretability of Many-Objective
Feature Selection [0.1474723404975345]
多目的特徴選択(MOFS)アプローチは、4つ以上の目的を用いて、教師付き学習タスクにおける機能のサブセットの関連性を決定する。
本稿では,MOFS結果の解釈と比較においてデータサイエンティストを支援する手法を提案する。
論文 参考訳(メタデータ) (2023-11-30T17:44:22Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
本研究では,因果推論におけるモデル選択の問題,特に条件付き平均処理効果(CATE)の推定について検討する。
本研究では,本研究で導入されたサロゲートモデル選択指標と,本研究で導入された新しい指標のベンチマークを行う。
論文 参考訳(メタデータ) (2022-11-03T16:26:06Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
継続的な学習では、後に再生されるトレーニング例(コアセット)のサブセットを格納し、破滅的な忘れを軽減します。
提案するオンラインコアセット選択(OCS, Online Coreset Selection)は, 各イテレーションにおいて最も代表的で情報性の高いコアセットを選択するシンプルで効果的な方法である。
提案手法は,過去のタスクに対して高親和性サンプルを選択しながら,目標データセットへのモデル適応を最大化し,破滅的忘れを直接的に抑制する。
論文 参考訳(メタデータ) (2021-06-02T11:39:25Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
トレーニングポイントが様々な影響を持つ場合、ランダムサンプリングよりも優れたモデル固有データサブサンプリング戦略を開発する。
具体的には、影響関数を活用して、選択戦略をガイドし、理論的に証明し、我々のアプローチが素早く高品質なモデルを選択することを実証する。
論文 参考訳(メタデータ) (2020-10-20T12:10:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。