Measuring Sample Importance in Data Pruning for Training LLMs from a Data Compression Perspective
- URL: http://arxiv.org/abs/2406.14124v2
- Date: Fri, 21 Jun 2024 02:30:32 GMT
- Title: Measuring Sample Importance in Data Pruning for Training LLMs from a Data Compression Perspective
- Authors: Minsang Kim, Seungjun Baek,
- Abstract summary: We consider data pruning as a method of data-efficient training of large language models.
We leverage log-likelihood function of trained models as a surrogate to measure information content of samples.
- Score: 4.079147243688765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compute-efficient training of large language models (LLMs) has become an important research problem. In this work, we consider data pruning as a method of data-efficient training of LLMs, where we take a data compression view on data pruning. We argue that the amount of information of a sample, or the achievable compression on its description length, represents its sample importance. The key idea is that, less informative samples are likely to contain redundant information, and thus should be pruned first. We leverage log-likelihood function of trained models as a surrogate to measure information content of samples. Experiments reveal a surprising insight that information-based pruning can enhance the generalization capability of the model, improves upon language modeling and downstream tasks as compared to the model trained on the entire dataset.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization [30.738229850748137]
MolPeg is a Molecular data Pruning framework for enhanced Generalization.
It focuses on the source-free data pruning scenario, where data pruning is applied with pretrained models.
It consistently outperforms existing DP methods across four downstream tasks.
arXiv Detail & Related papers (2024-09-02T09:06:04Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
In low-resource settings, the amount of seed data samples to use for data augmentation is very small.
We propose a novel method that augments training data by incorporating a wealth of examples from other datasets.
This approach can ensure that the generated data is not only relevant but also more diverse than what could be achieved using the limited seed data alone.
arXiv Detail & Related papers (2024-02-21T02:45:46Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Delving Deeper into Data Scaling in Masked Image Modeling [145.36501330782357]
We conduct an empirical study on the scaling capability of masked image modeling (MIM) methods for visual recognition.
Specifically, we utilize the web-collected Coyo-700M dataset.
Our goal is to investigate how the performance changes on downstream tasks when scaling with different sizes of data and models.
arXiv Detail & Related papers (2023-05-24T15:33:46Z) - Data Impressions: Mining Deep Models to Extract Samples for Data-free
Applications [26.48630545028405]
"Data Impressions" act as proxy to the training data and can be used to realize a variety of tasks.
We show the applicability of data impressions in solving several computer vision tasks.
arXiv Detail & Related papers (2021-01-15T11:37:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.