論文の概要: Ranking LLMs by compression
- arxiv url: http://arxiv.org/abs/2406.14171v1
- Date: Thu, 20 Jun 2024 10:23:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:21:16.565205
- Title: Ranking LLMs by compression
- Title(参考訳): 圧縮によるLCMのランク付け
- Authors: Peijia Guo, Ziguang Li, Haibo Hu, Chao Huang, Ming Li, Rui Zhang,
- Abstract要約: 圧縮の先駆けとして5つの大きな言語モデルを使用し、課題のある自然言語処理タスクのパフォーマンスを比較します。
実験の結果,圧縮比とモデル性能は正の相関関係にあることが明らかとなった。
- 参考スコア(独自算出の注目度): 13.801767671391604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We conceptualize the process of understanding as information compression, and propose a method for ranking large language models (LLMs) based on lossless data compression. We demonstrate the equivalence of compression length under arithmetic coding with cumulative negative log probabilities when using a large language model as a prior, that is, the pre-training phase of the model is essentially the process of learning the optimal coding length. At the same time, the evaluation metric compression ratio can be obtained without actual compression, which greatly saves overhead. In this paper, we use five large language models as priors for compression, then compare their performance on challenging natural language processing tasks, including sentence completion, question answering, and coreference resolution. Experimental results show that compression ratio and model performance are positively correlated, so it can be used as a general metric to evaluate large language models.
- Abstract(参考訳): 本稿では,情報圧縮として理解の過程を概念化し,ロスレスデータ圧縮に基づく大規模言語モデル(LLM)のランク付け手法を提案する。
本稿では,算術符号における圧縮長と累積負の対数確率との等価性を示す。
同時に、実際の圧縮を伴わずに評価基準圧縮比を得ることができるため、オーバーヘッドを大幅に削減できる。
本稿では,5つの大きな言語モデルを圧縮の先行として使用し,文の完全化や質問応答,コア参照解決など,自然言語処理タスクの性能比較を行う。
実験の結果,圧縮比とモデル性能は正の相関関係にあることが明らかとなった。
関連論文リスト
- Fundamental Limits of Prompt Compression: A Rate-Distortion Framework for Black-Box Language Models [21.025001473355996]
大規模言語モデル(LLM)の即時圧縮問題について定式化する。
ブラックボックスモデルのハードプロンプトを生成するトークンレベルのプロンプト圧縮手法を統合するためのフレームワークを提案する。
本稿では,現在の高速圧縮法の性能と最適戦略との間に大きなギャップがあることを述べる。
論文 参考訳(メタデータ) (2024-07-22T09:40:13Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - Unpacking Tokenization: Evaluating Text Compression and its Correlation with Model Performance [34.641079276516926]
我々は,0-gram言語モデリングとみなす圧縮の理論的重要性を論じる。
事前学習した言語モデルの下流での成功に対する圧縮の実証的重要性を示す。
本稿では,トークン化器の圧縮とモデル下流性能の相関関係を示す。
論文 参考訳(メタデータ) (2024-03-10T17:02:53Z) - A Survey on Transformer Compression [84.18094368700379]
自然言語処理(NLP)とコンピュータビジョン(CV)の領域においてトランスフォーマーは重要な役割を果たす
モデル圧縮法は、Transformerのメモリと計算コストを削減する。
この調査は、Transformerベースのモデルに適用することに焦点を当てた、最近の圧縮方法に関する包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-02-05T12:16:28Z) - Evaluating Large Language Models for Generalization and Robustness via
Data Compression [19.17779153163157]
本稿では,データ圧縮に基づく評価手法を提案する。
具体的には、2017年から2023年までの83ヶ月にわたる包括的なテストデータを収集し、モデルのトレーニングデータ遮断に従って、データをトレーニングとテスト期間に分割します。
実験では、ウィキペディア、ニュース記事、コード、arXiv論文、マルチモーダルデータなど、様々な規模の大言語モデル14を検証した。
論文 参考訳(メタデータ) (2024-02-01T18:56:18Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
大規模言語モデル(LLM)は、より高速な推論、メモリフットプリントの縮小、ローカルデプロイメントを可能にする。
2つの標準的な圧縮手法はプルーニングと量子化であり、前者はモデル層における冗長な接続を排除し、後者はより少ないビットでモデルパラメータを表現する。
LLM圧縮に関する既存の研究は、主にパープレキシティやダウンストリームタスクの精度といった一般的な指標のパフォーマンスに焦点を当てている。
パラメトリックな知識を測定するような、よりきめ細かいメトリクスは、いまだにかなり過小評価されている。
論文 参考訳(メタデータ) (2023-12-01T22:27:12Z) - Approximating Human-Like Few-shot Learning with GPT-based Compression [55.699707962017975]
我々は、推論中にデータ圧縮を可能にする、人間のような学習能力を備えた生成事前学習モデルを提案する。
本稿では,GPT(Generative Pre-trained Transformer)を用いてコルモゴロフ複雑性を近似する手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T05:22:33Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - What Do Compressed Multilingual Machine Translation Models Forget? [102.50127671423752]
平均BLEUはわずかに減少するが,表現不足言語の性能は著しく低下する。
圧縮は,高リソース言語においても,本質的な性差や意味バイアスを増幅することを示した。
論文 参考訳(メタデータ) (2022-05-22T13:54:44Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。